201625 The diagram shows towns A, B and C. Town B is 40 km due north of town A. The distance from B to C is 18 km and the bearing of C from A is 025°. It is known that $\angle B C A$ is obtuse. What is the bearing of C from B ?
(A) 070°
(B) 095°
(C) 110°
(D) 135°

D
Firstly, find C:

$$
\begin{aligned}
\frac{\sin C}{40} & =\frac{\sin 25^{\circ}}{18} \\
\sin C & =\frac{40 \times \sin 25^{\circ}}{18} \\
& =0.939151692 \ldots \\
C & =70^{\circ} \text { or } 110^{\circ} \text { (nearest whole) }
\end{aligned}
$$

But $\angle B C A$ is obtuse:
$\therefore C=110^{\circ}$
$\therefore \theta=180^{\circ}-\left(110^{\circ}+25^{\circ}\right)$

$$
=45^{\circ}
$$

As $180-45=135$, the bearing is 135°.

State Mean:
0.39

* These solutions have been provided by projectmaths and are not supplied or endorsed by NESA.

