2016 30c A school playground consists of part of a circle, with centre O, and a rectangle as shown in the diagram. The radius $O B$ of the circle is 45 m , the width $B C$ of the rectangle is 20 m and $\angle A O B$ is 100°. What is the area of the whole playground, correct to the nearest square metre?

Firstly, find the length of $A B$:

$$
\begin{aligned}
c^{2} & =a^{2}+b^{2}-2 a b \cos C \\
& =45^{2}+45^{2}-2(45)(45) \cos 100^{\circ} \\
& =4753.27512 \ldots \\
c & =68.94399988 . . \\
& =68.94(2 \text { dec } \mathrm{pl})
\end{aligned}
$$

Area of rectangle $=68.94 \times 20$

$$
=1378.88(2 \mathrm{dec} \mathrm{pl})
$$

Area of triangle $=\frac{1}{2} \times 45 \times 45 \times \sin 100^{\circ}$
= 997.1178499...
$=997.12(2$ dec pl)
As $360^{\circ}-100^{\circ}=260^{\circ}$,
Area of major sector $=\frac{\theta}{360} \pi r^{2}$
$=\frac{260}{360} \times \pi \times 45^{2}$
= 4594.579256...
$=4594.58$ (2 dec pl)
\therefore Total area $=1378.88+997.12+4594.58$

$$
=6970.58
$$

$$
=6971 \text { (nearest whole) } \quad \therefore \text { the area is } 6971 \mathrm{~m}^{2} .
$$

* These solutions have been provided by projectmaths and are not supplied or endorsed by NESA.

NESA: Notes from the Marking Centre

Candidates showed strength in these areas:

- calculating the area of simple composite figures (part c)
- applying the sine rule or cosine rule to find the side length of a triangle (part c)

