201730 The diagram shows the location of three schools.
c School A is 5 km due north of school B, school C is 13 km from school B and $\angle A B C$ is 135°.
(i) Calculate the shortest distance from school A to school C, to the nearest kilometre.
(ii) Determine the bearing of school C from school A, to the nearest degree.

NOT TO
SCALE
(i) Let distance $=x$.

Using the cosine rule:

$$
\begin{aligned}
x^{2} & =5^{2}+13^{2}-2(5)(13) \cos 135^{\circ} \\
& =285.9238816 \ldots \\
x & =16.90928389 \ldots \\
& =17 \text { (nearest whole) }
\end{aligned}
$$

\therefore the distance is 17 km .
(ii) Let $\angle B A C=\theta$.

Using the sine rule:

$$
\begin{aligned}
\frac{\sin \theta}{13} & =\frac{\sin 135^{\circ}}{17} \\
\sin \theta & =\frac{13 \times \sin 135^{\circ}}{17} \\
& =0.5407(4 \text { dec pl) } \\
\theta & =32.73325942 \ldots \\
& =33 \text { (nearest degree) }
\end{aligned}
$$

As $180+33=213$, the bearing is 213°.

State Mean:

1.03

* These solutions have been provided by projectmaths and are not supplied or endorsed by NESA.

NESA: Notes from the Marking Centre

Students should:

- understand a bearing as opposed to an angle (part (c)).

Student Strengths - In better responses, students were able to:

- apply the cosine rule to find the side length of a triangle and sine rule for an angle (part (c))

