30 The diagram shows two triangles.
c Triangle $A B C$ is right-angled, with $A B=13 \mathrm{~cm}$ and $\angle A B C=62^{\circ}$. In triangle $A C D, A D=x \mathrm{~cm}$ and $\angle D A C=40^{\circ}$.
The area of triangle $A C D$ is $30 \mathrm{~cm}^{2}$. What is the value of x, correct to one decimal place?

$$
\begin{aligned}
\frac{A C}{13} & =\sin 62^{\circ} \\
A C & =13 \times \sin 62^{\circ} \\
& =11.47831871 \ldots \\
& =11.4783(4 \text { dec pl })
\end{aligned}
$$

Area of triangle $A C D=\frac{1}{2} \times 11.4783 \times x \times \sin 40^{\circ}=30$

$$
\begin{aligned}
3.689060522 x & =30 \\
x & =8.132151754 \ldots \\
& =8.1(1 \operatorname{dec} \mathrm{pl})
\end{aligned}
$$

* These solutions have been provided by projectmaths and are not supplied or endorsed by NESA.

NESA: Marking Feedback

Students should:

- use the number of lines as an indication or the expected length of the response.

In better responses, students:

- calculated the length $A C$ using the correct trigonometric ratio
- could substitute the length $A C, 30 \mathrm{~cm}^{2}$ and 40° into the correct formula

Area for students to improve include:

- applying the correct area formula for right and non-right angled triangles

