```
\begin{tabular}{|l|l|l}
\hline \(\mathbf{1 1}\) & \(\mathbf{1 b}\) & Differentiate \(\frac{\sin ^{2} x}{x}\) with respect to \(x\).
\end{tabular}
\[
\text { Let } y=\frac{\sin ^{2} x}{x}
\]
Using the quotient rule,
Let \(u=(\sin x)^{2}, \quad u^{\prime}=2 \sin x \cdot \cos x=\sin 2 x\)
Let \(v=x, \quad v^{\prime}=1\)
\[
\begin{aligned}
\frac{d y}{d x} & =\frac{v \cdot u^{\prime}-u \cdot v^{\prime}}{v^{2}} \\
& =\frac{x \cdot \sin 2 x-\sin ^{2} x \cdot 1}{x^{2}} \\
& =\frac{x \sin 2 x-\sin ^{2} x}{x^{2}}
\end{aligned}
\]
```

* These solutions have been provided by projectmaths and are not supplied or endorsed by the Board of Studies

Board of Studies: Notes from the Marking Centre

Generally the quotient rule was applied correctly. In some cases the product rule was also applied correctly.
Source: http://www.boardofstudies.nsw.edu.au/hsc exams/

