$\mathbf{1 1}$	$\mathbf{1 d}$	Using the substitution $u=\sqrt{x}$, evaluate $\int_{1}^{4} \frac{e^{\sqrt{x}}}{\sqrt{x}} d x$.

$$
\begin{array}{rlr}
u=\sqrt{x}=x^{\frac{1}{2}} & \text { When } x=4, u=2 . \\
\frac{d u}{d x}=\frac{1}{2} x^{\frac{-1}{2}} & \text { When } x=1, u=1 . \\
\frac{d u}{d x}=\frac{1}{2 \sqrt{x}} & \\
d x=2 \sqrt{x} d u & \\
\int_{1}^{4} \frac{e^{\sqrt{x}}}{\sqrt{x}} d x=\int_{u=1}^{u=2} \frac{e^{u}}{\sqrt{x}} 2 \sqrt{x} \quad \text { du } \\
= & 2 \int_{u=1}^{u=2} e^{u} d u \\
= & 2\left[e^{u}\right]_{1}^{2} \\
= & 2\left(e^{2}-e\right) &
\end{array}
$$

* These solutions have been provided by projectmaths and are not supplied or endorsed by the Board of Studies

Board of Studies: Notes from the Marking Centre

Most candidates correctly found the derivative for the given substitution and/or changed the limits.

Source: http://www.boardofstudies.nsw.edu.au/hsc exams/

