| 11 | 2c | Find an expression for the coefficient |  | expansion of | $\left(3 x-\frac{4}{x}\right)^{8}$ | 2 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Method 1: |  | $\left.3 x-\frac{4}{x}\right)^{8}=\ldots+\binom{8}{3}(3 x)^{5}\left(-\frac{4}{x}\right)^{3}+\ldots$ |  | $\binom{8}{3} \cdot 3^{5} \cdot(-4)^{3}=$ | -870 912 | State Mean: 1.42/2 |
| Method 2: |  |  |  |  |  |  |
| Using $\binom{8}{k}(3 x)^{8-k}\left(\frac{4}{x}\right)^{k}$. |  |  |  |  |  |  |
| $\therefore x^{8-k} \cdot\left(\mathrm{x}^{-1}\right)^{k}=\mathrm{x}^{2}$ |  |  |  |  |  |  |
| $\therefore 8-k-k=2$ |  |  |  |  |  |  |
| $8-2 k=2$ |  |  |  |  |  |  |
|  |  | $k=3$ |  | $\binom{8}{3} \cdot 3^{5} \cdot(-4)^{3}=$ | -870912 |  |

* These solutions have been provided by projectmaths and are not supplied or endorsed by the Board of Studies


## Board of Studies: Notes from the Marking Centre

Most candidates were able to either quote the correct general term in the required expansion or determine that the term involving $x^{5} \times \frac{1}{x^{3}}$ yielded the coefficient of $x^{2}$. Some candidates evaluated $\binom{8}{3} 3^{5}(-4)^{3}$ incorrectly. Others omitted the negative sign or the brackets in their expansion or in their evaluation of $\binom{8}{3}(3 x)^{5}\left(-\frac{4}{x}\right)^{3}$. Some candidates correctly found the value of $r$ in the general term, but confusion with the subscripts led to the coefficient of a different term. A substantial number of candidates stated the term rather than the coefficient.
Source: http://www.boardofstudies.nsw.edu.au/hsc exams/

