$\mathbf{1 1}$ 4b | In the diagram, the vertices of |
| :--- |
| $\triangle A B C$ lie on the circle with centre O. |
| The point D lies on $B C$ such that |
| $\triangle A B D$ is isosceles and $\angle A B C=x$. |
| Copy or trace the diagram into your |
| writing booklet. |
| (i)Explain why $\angle A O C=2 x$.
 (ii)Prove that $A C D O$ is a
 cyclic quadrilateral.
 Let M be the midpoint of
 $A C$ and P the centre of
 the circle through A, C,
 and O. Show that P, M
 and O are collinear. |
| (i) |

* These solutions have been provided by projectmaths and are not supplied or endorsed by the Board of Studies

Board of Studies: Notes from the Marking Centre

(i) This was generally done well. A number of candidates did not use the correct terminology, confusing circumference and radius.
(ii) In better responses part (i) and angle $C D A$ were used to establish the result. Many candidates proved a cyclic quadrilateral by showing opposite angles supplementary, spending more time on this part than required.
(iii)This was a challenging question. Candidates had difficulty in expressing themselves clearly and often made inappropriate assumptions. The better responses showed a sophisticated approach, such as showing that the size of angle $M P O$ is 180°. Some candidates attempted to use other theorems, often unsuccessfully relating to two circles intersecting and the line joining their centres.
Source: http://www.boardofstudies.nsw.edu.au/hsc exams/

