$\mathbf{1 1}$	$\mathbf{6 a}$	Use mathematical induction to prove that, for $n \geq 1$, $1 \times 5+2 \times 6+3 \times 7+\ldots+n(n+4)=\frac{1}{6} n(n+1)(2 n+13)$.

Step 1: Prove true for $n=1$:

$$
\text { LHS }=1 \times 5
$$

$$
\text { RHS }=\frac{1}{6} \times 1 \times(1+1)(2+13)
$$

$$
=5 \quad=5
$$

\therefore true for $n=1$
Step 2: Assume true for $n=k$
i.e. $S_{k}=1 \times 5+2 \times 6+3 \times 7+\ldots+k(k+4)=\frac{1}{6} k(k+1)(2 k+13)$.

Now prove true for $n=k+1$

$$
\begin{aligned}
& \quad \text { i.e. } S_{k}+T_{k+1}=S_{k+1} \\
& \therefore \begin{aligned}
\therefore \frac{1}{6} & k(k+1)(2 k+13)+(k+1)(k+5)=\frac{k+1}{6}(k+1)(k+2)(2 k+15) \\
\text { LHS } & =\frac{1}{6} k(k+1)(2 k+13)+(k+1)(k+5) \\
& =\frac{k+1}{6}[k(2 k+13)+6(k+5)] \\
& =\frac{k+1}{6}\left[2 k^{2}+13 k+6 k+30\right] \\
& =\frac{k+1}{6}\left[2 k^{2}+19 k+30\right] \\
& =\frac{k+1}{6}(k+2)(2 k+15) \\
& =\text { RHS } \\
& \therefore \text { true for } n=k+1
\end{aligned}
\end{aligned}
$$

Step 3: As true for $n=1$, then true for $n=2,3,4, \ldots$ for all integers $n \geq 1$.

* These solutions have been provided by projectmaths and are not supplied or endorsed by the Board of Studies

Board of Studies: Notes from the Marking Centre

In most responses, candidates showed the statement true for $n=1$ by showing their substitution. Many responses did not demonstrate an understanding that the induction process depends on assuming the statement true for $n=k$ and using this assumption ts show the statement also true for $n=k+1$. Good practice is to write the statement that is to be proved. Common errors in the proof of the statement for $n=k+1$ included transcription errors and poor or inefficient algebraic approaches. Many candidates expanded both sides of the statement to show they were equal, often factorising a cubic into the required linear factors without any justification. The better responses involved factorisation rather than expansion. In some responses, candidates simply wrote out the structure of a mathematical induction proof without any attempt at the proof.
Source: http://www.boardofstudies.nsw.edu.au/hsc exams/

