11
7b \quad The binomial theorem states that

$$
(1+x)^{n}=\sum_{r=0}^{n}\binom{n}{r} x^{r} .
$$

(i) Show that $\sum_{r=1}^{n}\binom{n}{r} r x^{r}=n x(1+x)^{n-1}$
(ii) By differentiating the result from part (i), or otherwise, show that

$$
\sum_{r=1}^{n}\binom{n}{r} r^{2}=n(n+1) 2^{n-2}
$$

(iii) Assume now that n is even. Show that, for $n \geq 4$,
(i)

$$
\binom{n}{2} 2^{2}+\binom{n}{4} 4^{2}+\binom{n}{6} 6^{2}+\ldots+\binom{n}{n} n^{2}=n(n+1) 2^{n-3}
$$

$$
(1+x)^{n}=\binom{n}{0}+\binom{n}{1} x+\binom{n}{2} x^{2}+\binom{n}{3} x^{3}+\ldots+\binom{n}{n} x^{n}
$$

Differentiating both sides:

$$
n(1+x)^{n-1}=\binom{n}{1}+2\binom{n}{2} x+3\binom{n}{3} x^{2}+\ldots+n\binom{n}{n} x^{n-1}
$$

Multiplying both sides by x :

$$
n x(1+x)^{n-1}=\binom{n}{1} x+2\binom{n}{2} x^{2}+3\binom{n}{3} x^{3}+\ldots+n\binom{n}{n} x^{n}=\sum_{r=1}^{n}\binom{n}{r} r x^{r}
$$

(ii) $n x(1+x)^{n-1}=\binom{n}{1} x+2\binom{n}{2} x^{2}+3\binom{n}{3} x^{3}+\ldots+n\binom{n}{n} x^{n}$

Differentiating both sides:

$$
\begin{aligned}
& n(1+x)^{n-1}+n(n-1) x(1+x)^{n-2}=\binom{n}{1}+4\binom{n}{2} x+9\binom{n}{3} x^{2}+\ldots+n^{2}\binom{n}{n} x^{n-1} \ldots \ldots . \\
& \text { Let } x=1: \quad n \cdot 2^{n-1}+n(n-1) \cdot 2^{n-2}
\end{aligned}=\binom{n}{1}+2^{2}\binom{n}{2}+3^{2}\binom{n}{3}+\ldots+n^{2}\binom{n}{n}=\sum_{r=1}^{n}\binom{n}{r} r^{2} .
$$

(iii) Let $x=-1$ in (2):

$$
\begin{align*}
n(1+-1)^{n-1}+n(n-1) \cdot-1(1+-1)^{n-2} & =\binom{n}{1}-2^{2}\binom{n}{2}+3^{2}\binom{n}{3}-4^{2}\binom{n}{4}+\ldots+n^{2}\binom{n}{n} \\
0 & =\binom{n}{1}-2^{2}\binom{n}{2}+3^{2}\binom{n}{3}-4^{2}\binom{n}{4}+\ldots+n^{2}\binom{n}{n} \tag{3}
\end{align*}
$$

(2) - (3) : $\quad n(n+1) 2^{n-2}=2\left[2^{2}\binom{n}{2}+4^{2}\binom{n}{4}+\ldots+\binom{n}{n} n^{2}\right]$

$$
n(n+1) 2^{n-3}=2^{2}\binom{n}{2}+4^{2}\binom{n}{4}+\ldots+\binom{n}{n} n^{2}
$$

$$
\binom{n}{2} 2^{2}+\binom{n}{4} 4^{2}+\binom{n}{6} 6^{2}+\ldots+\binom{n}{n} n^{2}=n(n+1) 2^{n-3}
$$

* These solutions have been provided by projectmaths and are not supplied or endorsed by the Board of Studies

Board of Studies: Notes from the Marking Centre

(i) Better responses included expressions such as 'find the derivative' and 'multiply by x. Responses in which candidates multiplied by x first and then differentiated were largely unsuccessful.
(ii) Most candidates were able to differentiate $\sum_{r=1}^{n}\binom{n}{r} r x^{r}$ correctly, although careless errors were common. Most candidates who attempted this part were able to recognise that the next step involved substituting $x=1$.
(iii) Responses in which candidates attempted to prove the result using mathematical induction were generally unsuccessful.
Source: http://www.boardofstudies.nsw.edu.au/hsc exams/

