12	12a	Use mathematical induction to prove that $2^{3 n}-3^{n}$ is divisible by 5 for $n \geq 1$.	3
	Step 1: Prove true for $n=1$: $\begin{aligned} 2^{3}-3^{1} & =8-3 \\ & =5, \text { which is divisible by } 5 \\ \therefore \text { true for } n & =1 \end{aligned}$ Step 2: Assume true for $n=k$ Let $2^{3 k}-3^{k}=5 M$, where M is an integer. Now prove true for $n=k+1$ $\begin{aligned} & 2^{3(k+1)}-3^{k+1}=2^{3 k+3}-3^{k+1} \\ &=2^{3 k} .2^{3}-3^{k} .3 \\ &=8 \times 2^{3 k}-3.3^{k} \\ &=5 \times 2^{3 k}+3 \times 2^{3 k}-3.3^{k} \\ &=5 \times 2^{3 k}+3\left(2^{3 k}-3^{k}\right) \\ &=5 \times 2^{3 k}+3(5 \mathrm{M}) \\ &=5\left[2^{3 k}+3 \mathrm{M}\right], \text { which is divisible by } 5 \\ & \therefore \text { true for } n=k+1 \end{aligned}$		State Mean: $2.32 / 3$

* These solutions have been provided by projectmaths and are not supplied or endorsed by the Board of Studies

Board of Studies: Notes from the Marking Centre

Most candidates made reasonable progress in this induction proof. Almost all showed that $P(1)$ was true and wrote statements for $P(k)$ and $P(k+1)$. However, there were some transcription errors between statements. Most candidates used their assumption to complete a proof. Candidates who demonstrated better algebraic skills established $P(k+1)$ correctly. Candidates who followed standard methods often completed efficient and correct proofs. While many candidates could write a statement like $2^{3 k}-3^{k}=5 M$, they did not state that M was an integer. Some candidates used unorthodox mathematical notations, such as $2^{3 k}-3^{k} / 5$ or $2^{3 k}-3^{k}=\frac{P}{5}$ which do not demonstrate clear understanding. In some weaker responses, candidates substituted twice which made the task more complicated. A handful of candidates began with the $P(k)$ statement and built it up to arrive correctly at the $P(k+1)$ statement, in an unusual but valid approach.

Source: http://www.boardofstudies.nsw.edu.au/hsc exams/

