

* These solutions have been provided by projectmaths and are not supplied or endorsed by the Board of Studies

Board of Studies: Notes from the Marking Centre

(i) This part was an unusual application of parameters. In better responses, candidates used the right angle given in the triangle to complete the proof successfully. The solution eluded many candidates who gave a circular proof by substituting $y=\frac{t^{2}}{k}$ into y. There were at least eight different approaches using the right angle, including gradients, Pythagoras' Theorem, similarity, distances, the equation of $B C$, areas and angles in a semicircle.
(ii) In a number of better responses, candidates deduced or stated correctly that $a=\frac{k}{4}$ and thus the focus was $\left(0, \frac{k}{4}\right)$. In weaker responses, candidates concluded that the focus was $\left(\frac{k}{4}, 0\right)$ or made other statements, suggesting a misunderstanding of the meaning of focal length.
Source: http://www.boardofstudies.nsw.edu.au/hsc exams/

