13	11f	Use the substitution $u = e^{3x}$ to evaluat	$= \int_{0}^{\frac{1}{3}} \frac{e^{3x}}{e^{6x} + 1} dx.$	3
	Whe	$u = e^{3x}$ $\frac{du}{dx} = 3e^{3x}$ $\frac{du}{dx} = \frac{1}{3e^{3x}}$ $\frac{dx}{dx} = \frac{du}{3e^{3x}}$ $= \frac{du}{3u}$ $en x = \frac{1}{3}, u = e.$ $en x = 0, u = 1.$	$\int_{0}^{\frac{1}{3}} \frac{e^{3x}}{e^{6x} + 1} dx = \int_{u=1}^{u=e} \frac{u}{u^{2} + 1} \frac{du}{3u}$ $= \frac{1}{3} \int_{1}^{e} \frac{1}{1 + u^{2}} du$ $= \frac{1}{3} [\tan^{-1} u]_{1}^{e}$ $= \frac{1}{3} [\tan^{-1} e - \tan^{-1} 1]$ $= \frac{1}{3} [\tan^{-1} e - \frac{\pi}{4}]$	State Mean: 2.00/3

* These solutions have been provided by projectmaths and are not supplied or endorsed by the Board of Studies

Board of Studies: Notes from the Marking Centre

Candidates gained some marks in this part by correctly finding $\frac{du}{dx} = 3e^{3x}$ or changing the limits. Having done this, some candidates then used substitution successfully to obtain $\frac{1}{3}\int_{1}^{e}\frac{1}{u^{2}+1}du$, which then led to the inverse tan function. Of these candidates, many were able to execute the final step $\frac{1}{3}\left[\tan^{-1}e - \frac{\pi}{4}\right]$ or 0.14 to gain full marks.

Common problems were:

- reaching the step $\frac{1}{3} [\tan^{-1} e \tan^{-1} 1]$ then writing = 8.2, indicating that they were calculating the answer in degrees rather than radians
- not being able to obtain $\frac{1}{3} \int_{1}^{e} \frac{1}{u^2 + 1} du$ and so integrated using logs or single terms in e^{nx} .

Source: http://www.boardofstudies.nsw.edu.au/hsc_exams/