13
12 A cup of coffee with an initial temperature of $80^{\circ} \mathrm{C}$ is placed in a room with a c constant temperature of $22^{\circ} \mathrm{C}$.

The temperature, $T^{\circ} \mathrm{C}$, of the coffee after t minutes is given by $T=A+B e^{-k t}$, where A, B and k are positive constants.
The temperature of the coffee drops to $60^{\circ} \mathrm{C}$ after 10 minutes.
How long does it take for the temperature of the coffee to drop to $40^{\circ} \mathrm{C}$?
Give your answer to the nearest minute.

Subs $t=\infty$ and $T=22$ in $T=A+B e^{-k t}$

$$
\begin{aligned}
22 & =A+0 \\
A & =22
\end{aligned}
$$

Subs $t=0$ and $T=80$ in $T=22+B e^{-k t}$

$$
\begin{aligned}
80 & =22+B e^{0} \\
B & =80-22 \\
& =58 \\
\therefore T & =22+58 e^{-k t}
\end{aligned}
$$

Subs $t=10$ and $T=60$ in $T=22+58 e^{-k t}$

$$
\begin{aligned}
60 & =22+58 e^{-k(10)} \\
58 e^{-10 k} & =38 \\
-10 k & =\frac{38}{58} \\
k & =\frac{\log _{e} \frac{38}{58}}{-10} \\
& =0.042285685 \ldots
\end{aligned}
$$

$$
\begin{aligned}
& \text { Subs } T=40 \text { in } T=22+58 e^{-k t} \text { : } \\
& 40=22+58 e^{-k t} \\
& 58 e^{-k t}=18 \\
& e^{-k t}=\frac{18}{58} \\
& -k t=\log _{e} \frac{18}{58} \\
& t=\frac{\log _{e} \frac{18}{58}}{-k} \\
& =27.67062306 \text {... } \\
& =28 \text { (nearest whole) }
\end{aligned}
$$

\therefore about 28 minutes

* These solutions have been provided by projectmaths and are not supplied or endorsed by the Board of Studies

Board of Studies: Notes from the Marking Centre

Most candidates gained full marks for this part.

Common problems were:

- not identifying correct A and B values
- as a result of having incorrect A and B values, the subsequent log equation involved the log of a negative number, which was ignored
- truncating the k-value, leading to a less accurate answer.

Source: http://www.boardofstudies.nsw.edu.au/hsc exams/

