1312 The point $P\left(t, t^{2}+3\right)$ lies on the curve d $y=x^{2}+3$. The line ℓ has equation $y=2 x-1$. The perpendicular distance from P to the line ℓ is $D(t)$. (i) Show that $D(t)=\frac{t^{2}-2 t+4}{\sqrt{5}}$. (ii) Find the value of t when P is closest to ℓ. (iii) Show that, when P is closest to ℓ, the tangent to the curve at P is parallel to ℓ.	
(i) Using $\left(t, t^{2}+3\right)$ and $2 x-y-1=0$: $\begin{aligned} d & =\left\|\frac{2 t-\left(t^{2}+3\right)-1}{\sqrt{2^{2}+(-1)^{2}}}\right\| \\ & =\left\|\frac{2 t-t^{2}-3-1}{\sqrt{4+1}}\right\| \\ & =\left\|\frac{-t^{2}-2 t-4}{\sqrt{5}}\right\| \\ \therefore D(t) & =\frac{t^{2}-2 t+4}{\sqrt{5}} \end{aligned}$ (ii) Find t when minimum D : $\begin{aligned} & D^{\prime}(t)=\frac{2 t-2}{\sqrt{5}}=0 \\ & t=1 \\ & D^{\prime \prime}(t)=\frac{2}{\sqrt{5}}>0 \therefore \text { minimum } \\ & \therefore \text { closest when } t=1 \end{aligned}$	(iii) gradient of $\ell=2$ Also, for min distance, P is $(1,4)$.

* These solutions have been provided by projectmaths and are not supplied or endorsed by the Board of Studies

Board of Studies: Notes from the Marking Centre

(i) Candidates were required to use the perpendicular distance formula appropriately, showing correct substitutions. It was also necessary to clearly justify/explain the removal of the absolute value sign.
(ii) Candidates needed to recognise that this was a minimisation problem, and to correctly solve $D^{\prime}(t)=0$.
(iii) Candidates needed to use $y=x^{2}+3$ to establish the gradient y^{\prime}, use the substitution of $t=1$ from (ii), and then link it to the gradient of $y=2 x-1$. (Note: Some candidates were able to get full marks for (ii) and (iii) without necessarily getting (i) correct.)
Source: http://www.boardofstudies.nsw.edu.au/hsc exams/

