13		A particle moves along a straight line. The displacement of the particle from the origin is x, and its velocity is v. The particle is moving so that $v^{2}+9 x^{2}=k$, where k is a constant. Show that the particle moves in simple harmonic motion with period $\frac{2 \pi}{3}$.			2
	$\begin{aligned} v^{2}+9 x^{2} & =k \\ v^{2} & =k-9 x^{2} \\ \ddot{x} & =\frac{d}{d x}\left[\frac{1}{2} v^{2}\right] \\ & =\frac{d}{d x}\left[\frac{1}{2}\left(k-9 x^{2}\right)\right] \\ & =-9 x \end{aligned}$ As $=-9 x$, then in SHM with $n=3$. Also period $=\frac{2 \pi}{n}$, then period is $\frac{2 \pi}{3}$				

* These solutions have been provided by projectmaths and are not supplied or endorsed by the Board of Studies

Board of Studies: Notes from the Marking Centre

For 2 marks, candidates needed to show that the particle was moving in simple harmonic motion by proving the differential equation $\ddot{x}=-n^{2} x$, or correctly using $\frac{d}{d x}\left(\frac{1}{2} v^{2}\right)$, in the context of this question.

Common problems were:

- differentiating poorly, which limited the accuracy of some responses
- simply using a common identity such as $v^{2}=n^{2}\left(a^{2}-x^{2}\right)$ and stating that $n=3$.

Source: http://www.boardofstudies.nsw.edu.au/hsc exams/

