13 14 (i) Write down the coefficient of $x^{2 n}$ in the binomial expansion of $(1+x)^{4 n}$.
(ii) Show that $\left(1+x^{2}+2 x\right)^{2 n}=\sum_{k=0}^{2 n}\binom{2 n}{k} x^{2 n-k}(x+2)^{2 n-k}$.
(iii) It is known that

$$
\begin{aligned}
x^{2 n-k}(x+2)^{2 n-k}= & \binom{2 n-k}{0} 2^{2 n-k} x^{2 n-k}+\binom{2 n-k}{1} 2^{2 n-k-1} x^{2 n-k-1} \\
& +\ldots+\binom{2 n-k}{2 n-k} 2^{0} x^{4 n-2 k} \text { (Do NOT prove this.) }
\end{aligned}
$$

Show that $\binom{4 n}{2 n}=\sum_{k=0}^{n} 2^{2 n-2 k}\binom{2 n}{k}\binom{2 n-k}{k}$.
(i) Coefficient of $x^{2 n}$ in $(1+x)^{4 n}=\binom{4 n}{2 n}$
(ii)

$$
\begin{array}{rl|}
\left(1+x^{2}+2 x\right)^{2 n} & =\left(1+\left(x^{2}+2 x\right)\right)^{2 n} \text { which is of form }(1+X)^{2 n} \text { with } X=x^{2}+2 x \\
& =\sum_{k=0}^{2 n}\binom{2 n}{k} 1^{k}\left(x^{2}+2 x\right)^{2 n-k} \\
& =\sum_{k=0}^{2 n}\binom{2 n}{k} x^{2 n-k}(x+2)^{2 n-k} \\
\text { State Mean: } \\
\mathbf{0 . 7 2 / 1} \\
0.60 / 2 \\
\mathbf{0 . 3 7 / 3}
\end{array}
$$

(iii)

$$
\text { Firstly, } \begin{aligned}
\left(1+x^{2}+2 x\right)^{2 n} & =\left(x^{2}+2 x+1\right)^{2 n} \\
& =\left((1+x)^{2}\right)^{2 n} \\
& =(1+x)^{4 n}
\end{aligned}
$$

$$
\therefore\binom{4 n}{2 n} \text { is coefficient of } x^{2 n} \text { in }(1+x)^{4 n}
$$

$$
\left(1+x^{2}+2 x\right)^{2 n}=\sum_{k=0}^{2 n}\binom{2 n}{k} x^{2 n-k}(x+2)^{2 n-k}
$$

$$
=\sum_{k=0}^{2 n}\binom{2 n}{k}\left[\binom{2 n-k}{0} 2^{2 n-k} x^{2 n-k}+\binom{2 n-k}{1} 2^{2 n-k-1} x^{2 n-k+1}+\ldots+\binom{2 n-k}{2 n-k} 2^{0} x^{4 n-2 k}\right]
$$

Need to find all coefficients of $x^{2 n}$, by letting $k=0,1,2, \ldots, n$:
As $k=0$, then the term involving $x^{2 n}$ is $\binom{2 n}{0}\binom{2 n}{0} 2^{2 n} x^{2 n}$
As $k=1$, then the term involving $x^{2 n}$ is $\binom{2 n}{1}\binom{2 n-1}{1} 2^{2 n-2} x^{2 n}$
and so on ...
As $k=n$, then the term involving $x^{2 n}$ is $\binom{2 n}{n}\binom{2 n-n}{n} 2^{0} x^{2 n}$
Collecting all coefficients of $x^{2 n}: \quad \sum_{k=0}^{2 n}\binom{2 n}{k}\left[\binom{2 n}{0}\binom{2 n}{0} 2^{2 n}+\binom{2 n}{1}\binom{2 n-1}{1} 2^{2 n-2}+\ldots+\binom{2 n}{n}\binom{2 n-n}{n} 2^{0}\right]$
$\therefore\binom{4 n}{2 n}=\sum_{k=0}^{2 n}\binom{2 n}{k}\left[\binom{2 n}{0}\binom{2 n}{0} 2^{2 n}+\binom{2 n}{1}\binom{2 n-1}{1} 2^{2 n-2}+\ldots+\binom{2 n}{n}\binom{2 n-n}{n} 2^{0}\right]=\sum_{k=0}^{n} 2^{2 n-2 k}\binom{2 n}{k}\binom{2 n-k}{k}$

HSC examination papers © Board of Studies NSW for and on behalf of the Crown in right of State of New South Wales

* These solutions have been provided by projectmaths and are not supplied or endorsed by the Board of Studies

Board of Studies: Notes from the Marking Centre

(i) Most candidates successfully used the binomial theorem to find the correct coefficient.
(ii) Most candidates could see that they needed to rearrange $\left(1+x^{2}+2 x\right)^{2 n}$ to $[1+x(x+2)]^{2 n}$ in order to get the desired result.

The most common mistake was to use the binomial theorem to obtain
$\sum_{k=0}^{2 n}\binom{2 n}{k}(1)^{2 n-k}[x(x+2)]^{k}$ (or similar)
and then to simply state that this was equal to $\sum_{k=0}^{2 n}\binom{2 n}{k} x^{2 n-k}(x+2)^{2 n-k}$, with no explanation as to how the index changed from k to $2 n-k$.
(iii) Very few candidates obtained full marks for this part.

Many candidates gained some marks by recognising the connection between parts (i), (ii) and (iii) and realising that $\left(1+x^{2}+2 x\right)^{2 n} \equiv(1+x)^{4 n}$.

Substituting the given result into the right-hand side of the expression created problems, with incorrect statements such as $\sum_{k=0}^{2 n}\binom{2 n}{k} \sum_{r=0}^{2 n-k}\binom{2 n-k}{r} 2^{2 n-k-r} x^{2 n-k+r}$ or other expressions involving double sums being used.

Source: http://www.boardofstudies.nsw.edu.au/hsc exams/

