13	14c The equation $e^t = \frac{1}{t}$ has an approximate solution $t_0 = 0.5$.				
		(i) Use one application of Newton's method to show that $t_1 = 0.56$ is another			
		approximate solution of $e^t = \frac{1}{t}$.			
		(ii) Hence, or otherwise, find an approximation to the value of r for which the graphs $y = e^{rx}$ and $y = \log_e x$ have a common tangent at their point of intersection.			
(i)	Let f()	$x) = e^t - \frac{1}{t}$	(ii) Let $t = rx$: As two curves are $y = e^{rx}$ and $y = \log_e x$	State Mean: 1.14/2	
		$= e^{t} - t^{-1}$: $f(0.5) = e^{0.5} - 2$	then, $y = e^t$ and $y = \log_e \frac{t}{r}$	0.46/3	
	f'($x) = e^t + t^{-2}$	If two curves have a common tangent ther	n their	
	$= e^{t} + \frac{1}{t^{2}} \therefore f'(0.5) = e^{0.5} + 4$		point of contact is a double root.		
			As $f(x) = e^t - \log_e \frac{t}{r}$ has double root,	$= e^t - \log_e \frac{t}{r}$ has double root,	
	Newto	on's Method: $x_1 = x_0 - \frac{f(x_0)}{f'(x_0)}$	[Let $g(x) = \log_e$	$\frac{t}{r}$	
		$= 0.5 - \frac{e^{0.5} - 2}{e^{0.5} + 4}$	$\frac{1}{r}$	1,	
	= 0.562187301		$g'(x) = \frac{\frac{1}{r}}{\frac{t}{r}} = \frac{1}{t}$]		
		= 0.56(2 dec pl)	then, $f'(x) = e^t - \frac{1}{t}$ has single root.		
			From (i), root is at $t = rx = 0.56$ $\therefore x =$	$\frac{0.56}{r}$	
			Subs in $e^{rx} = \log_e x$	1	
			$e^{0.56} = \log_e \frac{0.56}{r}$		
			$1.7506725 = \log_e \frac{0.56}{r}$		
			$\frac{0.56}{r} = e^{1.7506725}$		
			$\frac{0.56}{r} = 5.75847395$		
			$r = \frac{0.56}{5.75847395}$		
			= 0.97247987		
			= 0.97 (2 dec pl)		

* These solutions have been provided by *projectmaths* and are not supplied or endorsed by the Board of Studies

Board of Studies: Notes from the Marking Centre

 Although most candidates knew Newton's method, many could not create a valid function.

Common problems were:

- not differentiating properly
- letting the function be $f(t) = \frac{1}{t}$ or e^t , which in both cases simplified the problem
- using 0.56 instead of 0.5.
- (ii) Most candidates realised that $e^{rx} = \log_e x$ at the point of intersection. Not many realised that the gradients also would be equal due to the common tangent.

Hence, they did not have a second equation, $re^x = \frac{1}{x}$, which was also required to solve the question.

A common problem was:

finding the value of x and not going on to find the value or r, as was required.

Source: http://www.boardofstudies.nsw.edu.au/hsc_exams/