

* These solutions have been provided by projectmaths and are not supplied or endorsed by the Board of Studies
(i) A factor of $(x-3)$ means $P(3)=0$:
$P(3)=(3+1)(3-3) Q(3)+3 a+b=0$ $3 a+b=0$
Also, $\mathrm{P}(-1)=8$:

$$
P(-1)=(-1+1)(-1-3) Q(-1)-a+b=8
$$

$$
-a+b=8
$$

$$
\text { (1) - (2): } \begin{aligned}
& 4 a=-8 \\
a & =-2
\end{aligned}
$$

Subs in (1): $\begin{aligned} 3(-2)+b & =0 \\ -6+b & =0\end{aligned}$

$$
-6+b=0
$$

$$
b=6
$$

$$
\therefore a=-2 \text { and } b=6
$$

(ii) As $P(x)=(x+1)(x-3) Q(x)-2 x+6$, then the remainder is $-2 x+6$

* These solutions have been provided by projectmaths and are not supplied or endorsed by the Board of Studies

Board of Studies: Notes from the Marking Centre

(i) While many candidates interpreted the information given in the question sufficiently to write a statement like $P(3)=0$, they did not use this to substitute correctly into the expression for $P(x)$. Some tried to solve convoluted equations.
(ii) A substantial number of candidates did not attempt this part. Of those who attempted it, many substituted their values of a and b from (i) into $P(x)$ but then attempted either to solve or to divide, indicating that they had not really understood the notion of a polynomial remainder. A few candidates correctly identified the remainder.
Source: http://www.boardofstudies.nsw.edu.au/hsc exams/

