Want more revision exercises? Get MathsFit HSC Extension 1 for $\$ 2.95 /$ topic - New from projectmaths
2014 11d Evaluate $\int_{2}^{5} \frac{x}{\sqrt{x-1}} d x$ using the substitution $x=u^{2}+1$.

$$
\begin{aligned}
x & =u^{2}+1 \\
\frac{d x}{d u} & =2 u \\
d x & =2 u d u \\
\int_{2}^{5} \frac{x}{\sqrt{x-1}} d x & =\int_{1}^{2} \frac{u^{2}+1}{u} 2 u d u \\
& =2 \int_{1}^{2} u^{2}+1 d u \\
& =2\left[\frac{u^{3}}{3}+u\right]_{1}^{2} \\
& =2\left[\frac{2^{3}}{3}+2-\left(\frac{1^{2}}{3}+1\right)\right] \\
& =\frac{20}{3}
\end{aligned}
$$

$$
d x=2 u d u \quad \text { If } x=5, \text { then } u=2, \text { if } x=2, \text { then } u=1
$$

State Mean:

1.81

* These solutions have been provided by projectmaths and are not supplied or endorsed by BOSTES.

Board of Studies: Notes from the Marking Centre
Most candidates found the derivative for the given substitution of $u=x^{2}+1$ and/or changed the limits correctly.
A common problem was:

- making errors when trying to re-arrange the integrand, sometimes leading to an expression which contained both x and u, making it difficult to go further

Source: http://www.boardofstudies.nsw.edu.au/hsc exams/2014/pdf doc/2014-maths-ext-1.pdf

