Want more revision exercises? Get MathsFit HSC Extension $\mathbf{1}$ for $\$ 2.95 /$ topic - New from projectmaths

2014 12b The region bounded by $y=\cos 4 x$ and the x axis, between $x=0$ and $x=\frac{\pi}{8}$, is rotated about the x-axis to form a solid. Find the volume of the solid.

$$
\begin{aligned}
\text { Volume } & =\pi \int y^{2} d x \\
& =\pi \int_{0}^{\frac{\pi}{8}} \cos ^{2} 4 x d x \\
& =\frac{\pi}{2} \int_{0}^{\frac{\pi}{8}}(1+\cos 8 x) d x \\
& =\frac{\pi}{2}\left[x+\frac{1}{8} \sin 8 x\right]_{0}^{\frac{\pi}{8}}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{\pi}{2}\left[\frac{\pi}{8}+\frac{1}{8} \sin \pi-0\right] \\
& =\frac{\pi}{2}\left[\frac{\pi}{8}\right] \\
& =\frac{\pi^{2}}{16}
\end{aligned}
$$

\therefore volume of $\frac{\pi^{2}}{16}$ units 3.

* These solutions have been provided by projectmaths and are not supplied or endorsed by BOSTES.

Board of Studies: Notes from the Marking Centre

Candidates were required to use the formula for volume, use double angle formula involving $\cos ^{2} 4 x=\frac{1}{2}(1+\cos 2.4 x)=\frac{1}{2}(1+\cos 8 x)$ and complete two substitutions.

Common problems were:

- using the double angle formula incorrectly; for example, knowing the identity for $\cos ^{2} x$ but not making the correct substitution to find the identity for $\cos ^{2} 4 x$
- knowing the primitive of $\cos ^{2} x$ and attempting to jump straight to the primitive of $\cos ^{2} 4 x$ but making errors in determining their expression
- making errors with their substitutions of $\sin \pi$, with $\sin \pi=1$ being the most common mistake
- omitting π from the expression for the volume
- assuming that $(\cos 4 x)^{2}=\cos 16 x$ or $\cos ^{2} 16 x$.

Source: http://www.boardofstudies.nsw.edu.au/hsc exams/2014/pdf doc/2014-maths-ext-1.pdf

