Want more revision exercises? Get MathsFit HSC Extension 1 for \$2.95/topic - New from projectmaths
2014 12c A particle moves along a straight line with displacement $x \mathrm{~m}$ and velocity $v \mathrm{~ms}^{-1}$.
3 The acceleration of the particle is given by $\ddot{x}=2-e^{-\frac{x}{2}}$. Given that $v=4$ when $x=0$, express v^{2} in terms of x.

$$
\text { Using } \begin{aligned}
\frac{1}{2} v^{2} & =\int a d x \\
& =\int 2-e^{-\frac{x}{2}} d x \\
\frac{1}{2} v^{2} & =2 x+2 e^{-\frac{x}{2}}+c \\
\frac{1}{2}(4)^{2} & =2(0)+2 e^{0}+c \\
8 & =2+c \\
c & =6
\end{aligned}
$$

$$
\begin{aligned}
\frac{1}{2} v^{2} & =2 x+2 e^{-\frac{x}{2}}+6 \\
v^{2} & =4 x+4 e^{-\frac{x}{2}}+12 \\
v^{2} & =4\left(x+e^{-\frac{x}{2}}+3\right)
\end{aligned}
$$

* These solutions have been provided by projectmaths and are not supplied or endorsed by BOSTES.

Board of Studies: Notes from the Marking Centre

Candidates generally knew that $\ddot{x}=\frac{d}{d x}\left(\frac{1}{2} v^{2}\right)$ or $v \frac{d v}{d x}$ and applied this correctly to attain the desired result. Some candidates approached the question by separating variables and were generally successful. Common problems were:

- not finding the correct primitive of $e^{-\frac{x}{2}}$
- not determining the value of the constant of integration correctly
- finding $\dot{x}=v=2 x+2 e^{-\frac{x}{2}}+c$ and then squaring to get v^{2}
- finding $\frac{1}{2} v^{2}=2 x+2 e^{-\frac{x}{2}}+6$ but then writing $v^{2}=x+e^{-\frac{x}{2}}+3$

Source: http://www.boardofstudies.nsw.edu.au/hsc exams/2014/pdf doc/2014-maths-ext-1.pdf

