Want more revision exercises? Get MathsFit HSC Extension 1 for \$2.95/topic - New from projectmaths
2014 12d Use the binomial theorem to show that $0=\binom{n}{0}-\binom{n}{1}+\binom{n}{2}-\ldots+(-1)^{n}\binom{n}{n}$.

$$
(1+x)^{n}=\binom{n}{0}+\binom{n}{1} x+\binom{n}{2} x^{2}+\ldots+\binom{n}{n} x^{n}
$$

Let $x=-1:(1-1)^{n}=\binom{n}{0}+\binom{n}{1}(-1)+\binom{n}{2}(-1)^{2}+\ldots+\binom{n}{n}(-1)^{n}$

$$
0=\binom{n}{0}-\binom{n}{1}+\binom{n}{2}-\ldots+(-1)^{n}\binom{n}{n}
$$

* These solutions have been provided by projectmaths and are not supplied or endorsed by BOSTES.

Board of Studies: Notes from the Marking Centre

Candidates who had fluency with the binomial expansion of either $(1+x)^{n}$ or $(1-x)^{n}$ were most successful. One method that was often used was:

$$
\begin{aligned}
(1-1)^{n}=0 & =\binom{n}{0} \cdot 1^{n} \cdot(-1)^{0}+\binom{n}{1} \cdot 1^{n-1} \cdot(-1)^{1}+\binom{n}{2} \cdot 1^{n-2} \cdot(-1)^{2}+\ldots+\binom{n}{n} \cdot 1^{0} \cdot(-1)^{n} \\
& =\binom{n}{0}-\binom{n}{1}+\binom{n}{2}+\ldots+\binom{n}{n}(-1)^{n}
\end{aligned}
$$

Common problems were:

- misusing the sigma notation for the expansion of $(1+x)^{n}$ or $(1-x)^{n}$
- failing to realise that the expansion of $(1+x)^{n}$ is not the same as $(x+1)^{n}$ as a direct binomial expansion
- approaching this part by considering specific cases (say proving true for $n=3$)

Source: http://www.boardofstudies.nsw.edu.au/hsc exams/2014/pdf doc/2014-maths-ext-1.pdf

