Want more revision exercises? Get MathsFit HSC Extension 1 for $\$ 2.95 /$ topic - New from projectmaths
2014 12e The diagram shows the graph of a function $f(x)$. The equation $f(x)=0$ has a root at $x=\alpha$. The value x_{1}, as shown in the diagram, is chosen as a first approximation of α. A second approximation, x_{2}, of α is obtained by applying Newton's method once, using x_{1} as the first approximation. Using a
 diagram, or otherwise, explain why x_{1} is a closer approximation than x_{2}.

The tangent to the curve at $x=x_{1}$ meets the x-axis at a point that is further away from $x=\alpha$ then $x=x_{1}$.

* These solutions have been provided by projectmaths and are not supplied or endorsed by BOSTES.

Board of Studies: Notes from the Marking Centre

This part was answered well by most candidates. Many candidates answered the question by drawing the diagram, showing the tangent at x_{1} and an appropriate position for its x-intercept. A substantial number of candidates approached the question by referring to the formula for Newton's method and stating that because $f^{\prime}\left(x_{1}\right)<0$ and $f\left(x_{1}\right)>0$ then $\frac{f\left(x_{1}\right)}{f^{\prime}\left(x_{1}\right)}<0\left(-\frac{f\left(x_{1}\right)}{f^{\prime}\left(x_{1}\right)}>0\right)$ hence $x_{2}=x_{1}-\frac{f\left(x_{1}\right)}{f^{\prime}\left(x_{1}\right)}>x_{1}$.
Candidates who argued from the formula needed to be clear with their understanding of the sign of the derivative and of the function at the first approximation for the root.
Common problems were:

- not drawing a tangent to the curve at x_{1}
- simply drawing x_{2} on their diagram without any explanation
- basing an argument on the function values at x_{1} and x_{2}
- failing to explain why x_{1} is a better approximation - simply restating the question.

Candidates should pay attention to a question when a question states 'explain' and write clearly, re-read their statements and complete their arguments.

Source: http://www.boardofstudies.nsw.edu.au/hsc exams/2014/pdf doc/2014-maths-ext-1.pdf

