Want more revision exercises? Get MathsFit HSC Extension 1 for $\$ 2.95 /$ topic - New from projectmaths
$\mathbf{2 0 1 4} \mathbf{1 2 f}$ Milk taken out of a refrigerator has a temperature of $2^{\circ} \mathrm{C}$. It is placed in a room of $\mathbf{3}$ constant temperature $23^{\circ} \mathrm{C}$. After t minutes the temperature, $T^{\circ} \mathrm{C}$, of the milk is given by $T=A-B e^{-0.03 t}$, where A and B are positive constants. How long does it take for the milk to reach a temperature of $10^{\circ} \mathrm{C}$?

$$
\begin{gathered}
T=A-B e^{-0.03 t} \\
\text { When } t \rightarrow \infty, T=23
\end{gathered}
$$

$\therefore A=23$
When $t=0, T=2$:

$$
2=23-B e^{-0.03(0)}
$$

$\therefore B=21$
$\therefore T=23-21 e^{-0.03 t}$

$$
\begin{aligned}
& \text { Subs } \begin{aligned}
T= & 10 \text { in } T=23-21 e^{-0.03 t:} \\
10 & =23-21 e^{-0.03 t} \\
21 e^{-0.03 t} & =13 \\
e^{-0.03 t} & =\frac{13}{21} \\
-0.03 t & =\ln \frac{13}{21} \\
& \\
t & =\frac{\ln \frac{13}{21}}{-0.03} \\
& =15.98576932 \ldots \\
& =16 \text { (nearest whole) } \quad \therefore 16 \text { minutes Mean: }
\end{aligned}
\end{aligned}
$$

* These solutions have been provided by projectmaths and are not supplied or endorsed by BOSTES.

Board of Studies: Notes from the Marking Centre

It was evident that many candidates had a sound understanding of Newton's Law of Cooling. This allowed them to find the correct values for A and B and the correct solution.

Common problems were:

- not identifying the correct values of A and B
- failing to substitute $t=0$
- having incorrect values for A or B (or both A and B), leading to a subsequent exponential equation that involved the logarithm of a negative number (which was ignored)
- not realising that as $t \rightarrow \infty, T=23 \therefore A=23$.

Source: http://www.boardofstudies.nsw.edu.au/hsc exams/2014/pdf doc/2014-maths-ext-1.pdf

