Want more revision exercises? Get MathsFit HSC Extension 1 for $\$ 2.95 /$ topic - New from projectmaths
2014 13a Use mathematical induction to prove that $2^{n}+(-1)^{n+1}$ is divisible by 3 for all 3 integers $n \geq 1$.

Prove true for $n=1$:

$$
\begin{aligned}
2^{1}+(-1)^{1+1} & =2+1 \\
& =3, \text { which is divisible by } 3 .
\end{aligned} \quad \therefore \text { true for } n=1 .
$$

Assume true for $n=k$:
Let $2^{k}+(-1)^{k+1}=3 M$, where M is an integer.
Now, prove true for $n=k+1$:

$$
\begin{aligned}
2^{k+1}+(-1)^{k+2} & =2 \cdot 2^{k}+(-1)^{k+1} \cdot(-1) \\
& =2 \cdot 2^{k}-(-1)^{k+1} \\
& =2\left[2^{k}+(-1)^{k+1}\right]-3(-1)^{k+1} \\
& =2[3 \mathrm{M}]-3(-1)^{k+1} \\
& =3\left(2 \mathrm{M}-(-1)^{k+1}\right), \text { which is divisible by } 3 . \quad \therefore \text { true for } n=k+1 .
\end{aligned}
$$

$2^{n}+(-1)^{n+1}$ is divisible by 3 for all integers $n \geq 1$.

* These solutions have been provided by projectmaths and are not supplied or endorsed by BOSTES.

Board of Studies: Notes from the Marking Centre

A large number of candidates executed a correct induction proof. Those who were adept with index laws produced an efficient proof within a few lines.
Common problems were:

- knowing to use the assumption but not manipulating the resulting expression to arrive at the final step
- treating it as an equation and working on both sides.

Source: http://www.boardofstudies.nsw.edu.au/hsc exams/2014/pdf doc/2014-maths-ext-1.pdf

