Want more revision exercises? Get MathsFit HSC Extension 1 for $\$ 2.95 /$ topic - New from projectmaths
2014 13b One end of a rope is attached to a truck and the other end to a weight. The rope passes over a small wheel located at a vertical distance of 40 m above the point where the rope is attached to the truck. The distance from the truck to the
 small wheel is $L \mathrm{~m}$ and the horizontal distance between them is $x \mathrm{~m}$. The rope makes an angle θ with the horizontal at the point where it is attached to the truck. The truck moves left to right at a constant speed of $3 \mathrm{~ms}^{-1}$, as shown in the diagram.
(i) Using Pythagoras' Theorem, or otherwise, show that $\frac{d L}{d x}=\cos \theta$.
(ii) Show that $\frac{d L}{d t}=3 \cos \theta$.
(i)

$$
\begin{aligned}
L^{2} & =x^{2}+40^{2} \\
L & =\sqrt{x^{2}+1600} \\
\frac{d L}{d x} & =\frac{1}{2}\left(x^{2}+1600\right)^{-\frac{1}{2}} \cdot 2 x \\
& =\frac{x}{\sqrt{x^{2}+1600}} \\
& =\frac{x}{L} \\
& =\cos \theta
\end{aligned}
$$

(ii)

$$
\begin{aligned}
\frac{d L}{d t} & =\frac{d L}{d x} \times \frac{d x}{d t} \\
& =\cos \theta \times 3 \\
& =3 \cos \theta
\end{aligned}
$$

State Mean:
1.14
0.79

* These solutions have been provided by projectmaths and are not supplied or endorsed by BOSTES.

Board of Studies: Notes from the Marking Centre

(i) Common problems were:

- being confused by the use of an angle in the diagram, many differentiated with respect to θ, leading to convoluted solutions using $\frac{d L}{d \theta}$ and $\frac{d \theta}{d x}$.
- not making the connection that $L=\sqrt{x^{2}+40^{2}} \Rightarrow \frac{d L}{d x}=\frac{x}{L}=\cos \theta$, leading to the incorrect substitution of $\frac{40}{\tan \theta}$ into $\frac{d L}{d x}=\frac{x}{\sqrt{x^{2}+40^{2}}}$ in order to eliminate x
- misunderstanding about variables as was evident in the process:
$\cos \theta=\frac{x}{L} \Rightarrow \frac{x}{\cos \theta} \Rightarrow \frac{d L}{d x}=\frac{1}{\cos \theta}$
HSC examination papers © Board of Studies NSW for and on behalf of the Crown in right of State of New South Wales
- substituting $x=3 t \Rightarrow L=\sqrt{40^{2}+(3 t)^{2}}$ and proceeding using this.
(ii) Most candidates stated that $\frac{d x}{d t}=3$ and arrived at the correct result.

Source: http://www.boardofstudies.nsw.edu.au/hsc exams/2014/pdf doc/2014-maths-ext-1.pdf

