Want more revision exercises? Get MathsFit HSC Extension 1 for $\$ 2.95 /$ topic - New from projectmaths
2014 14b Two players A and B play a game that consists of taking turns until a winner is determined. Each turn consists of spinning the arrow on a spinner once. The spinner has three sectors P, Q and R. The probabilities that the arrow stops in sectors P, Q and R are p, q and r respectively.

The rules of the game are as follows:

- If the arrow stops in sector P, then the player having the turn wins.
- If the arrow stops in sector Q, then the player having the turn loses and the other player wins
- If the arrow stops in sector R, then the other player takes a turn.

Player A takes the first turn.
(i) Show that the probability of player A winning on the first or second turn of the game is $(1-r)(p+r)$.
(ii) Show that the probability that player A eventually wins the game is

$$
\frac{p+r}{1+r} .
$$

(i)

$$
\mathrm{P}(A \text { wins on first turn })=p
$$

$P(A$ spins sector R and then B spins sector $Q)=r q$
$\mathrm{P}(A$ wins on first or second turn $)=p+r q$

$$
\begin{array}{ll}
=p+r(1-p-r) & \quad(\text { as } p+q+r=1) \\
=p+r-p r-r^{2} & \\
=p+r-r(p+r) & \\
=(1-r)(p+r) &
\end{array}
$$

$\mathrm{P}(A$ wins on third turn $)=r^{2} p$, and $\mathrm{P}(A$ wins on fourth turn $)=r^{3} q$.
$\mathrm{P}(A$ eventually wins $)=p+r q+r^{2} p+r^{3} q+r^{4} p+r^{5} q+\ldots$

$$
\begin{aligned}
& =p+r q+r^{2}(p+r q)+r^{4}(p+r q)+\ldots \\
& =(1-r)(p+r)+r^{2}(1-r)(p+r)+r^{4}(1-r)(p+r)+\ldots \\
& =(1-r)(p+r)\left[1+r^{2}+r^{4}+\ldots\right]
\end{aligned}
$$

$$
=(1-r)(p+r)\left[\frac{1}{1-r^{2}}\right] \quad \text { (using limiting sum formula) }
$$

Looking for Mathematics
Extension 2 Revision?
Go to MathsFit for
Topic files - just $\$ 2.95$
each

* These solutions have been provided by projectmaths and are not supplied or endorsed by BOSTES.

Board of Studies: Notes from the Marking Centre

(i) Many candidates were confused about the rules of the game and hence had trouble gaining any marks for either part of this question. A significant number of candidates simply did not attempt this question. Those who were able to interpret the rules were generally successful in showing the required result. (ii) Only a few candidates came up with a series that would lead to a correct solution. Candidates are reminded that when using the limiting sum formula it is important to state the condition on ' r ' for the limiting sum to exist and not just assume that the series converges.

Source: http://www.boardofstudies.nsw.edu.au/hsc exams/2014/pdf doc/2014-maths-ext-1.pdf

