$2015 \frac{11}{\mathbf{d}}$ Express $5 \cos x-12 \sin x$ in the form $A \cos (x+\alpha)$, where $0 \leq \alpha \leq \frac{\pi}{2}$.

$$
\begin{aligned}
A & =\sqrt{5^{2}+(-12)^{2}} \\
& =13
\end{aligned}
$$

$$
\therefore 5 \cos x-12 \sin x=13 \cos (x+\alpha)
$$

$$
\frac{5}{13} \cos x-\frac{12}{13} \sin x=\cos x \cos \alpha-\sin x \sin \alpha
$$

$$
\therefore \cos \alpha=\frac{5}{13}
$$

$$
\alpha=\frac{5}{13}
$$

$$
\alpha=1.176005207 \ldots
$$

$$
=1.18(2 \mathrm{dec} \mathrm{pl})
$$

$\therefore 5 \cos x-12 \sin x=13 \cos (x+1.18)$

* These solutions have been provided by projectmaths and are not supplied or endorsed by BOSTES.

Board of Studies: Notes from the Marking Centre

The question was attempted well by the majority of candidates.
In the better responses, candidates used appropriate formulae to directly obtain the values of A and \square.

Common problems were:

- not using the information,
responses typically stated that $\tan \bar{Z}=\frac{\square 12}{5}$
- incorrect reasoning after expanding $A \cos (x+\square)$
- giving \square in degrees, even though the question asked for \square in radians.

