201512 The points $P\left(2 a p, a p^{2}\right)$ and $Q\left(2 a q, a q^{2}\right)$ lie on the parabola $x^{2}=4 a y$. The equation of b the chord PQ is given by $(p+q) x-2 y-2 a p q=0$. (Do NOT prove this.)
(i) Show that if $P Q$ is a focal chord then $p q=-1$.
(ii) If $P Q$ is a focal chord and P has coordinates ($8 a, 16 a$), what are the coordinates of Q in terms of a ?
(i) Coordinates of focus is $(0, a)$.

Substitute in $(p+q) x-2 y-2 a p q=0$:

$$
\begin{aligned}
(p+q) 0-2(a)-2 a p q & =0 \\
2 a p q & =2 a \\
p q & =-1
\end{aligned}
$$

State Mean:
0.72
(ii) $2 a p=8 a$

$$
p=4
$$

Substitute in $p q=-1$

$$
4 q=-1
$$

$$
q=-\frac{1}{4}
$$

Coordinates of $Q:\left(2 a\left(-\frac{1}{4}\right), a\left(-\frac{1}{4}\right)^{2}=Q\left(-\frac{a}{2}, \frac{a}{16}\right)\right.$

* These solutions have been provided by projectmaths and are not supplied or endorsed by BOSTES.

Board of Studies: Notes from the Marking Centre

(b)(i)

This part highlighted the need to understand the difference between $A \Rightarrow B$ and $B \Rightarrow A$.
Candidates were given that $P Q$ was a focal chord and asked to show that $p q=-1$. Candidates who substituted $(0, a)$ into the equation of the chord were able to derive the result.

A common problem was:

- substituting $p q=-1$ or calculating gradients with spurious justifications, suggesting that what was required was not understood.
(ii)

Candidates who recognised that $2 a p=8 a \Rightarrow p=4$ and then used $p q=-1$ to derive $q=-\frac{1}{4}$ quickly arrived at the correct coordinates $\left(\frac{-a}{2}, \frac{a}{16}\right)$.

