Want more revision exercises? Get MathsFit HSC Extension 1 for $\$ 2.95 /$ topic - New from projectmaths
201512 A kitchen bench is in the shape of a segment of a d circle. The segment is bounded by an arc of length 200 cm and a chord of length 160 cm . The radius of the circle is $r \mathrm{~cm}$ and the chord subtends an angle θ at the centre O of the circle.
(i) Show that $160^{2}=2 r^{2}(1-\cos \theta)$.
(ii) Hence, or otherwise, show that $8 \theta^{2}+25 \cos \theta-25=0$.
(iii) Taking $\theta_{1}=\pi$ as a first approximation to the value of θ, use one application of Newton's

Not to scale method to find a second approximation to the value of θ. Give your answer correct to two decimal places.
(i) Using the cosine rule:

$$
\begin{array}{cc}
160^{2}=r^{2}+r^{2}-2(r)(r) \cos \theta & \\
160^{2}=2 r^{2}-2 r^{2} \cos \theta & \text { State Mean: } \\
160^{2}=2 r^{2}(1-\cos \theta) & 0.77
\end{array}
$$

(ii) Now, arc length: $200=r \theta$

$$
r=\frac{200}{\theta}
$$

Substitute in part (i):

$$
\begin{aligned}
160^{2} & =2\left(\frac{200}{\theta}\right)^{2}(1-\cos \theta) \\
25600 & =\frac{80000}{\theta^{2}}(1-\cos \theta) \\
8 & =\frac{25}{\theta^{2}}(1-\cos \theta) \\
8 \theta^{2} & =25-25 \cos \theta \quad \text { State Mean: } \\
8 \theta^{2}+25 \cos \theta-25 & =0
\end{aligned}
$$

(iii) Let $f(\theta)=8 \theta^{2}+25 \cos \theta-25$

$$
\begin{aligned}
f(\pi) & =8 \pi^{2}+25 \cos \pi-25 \\
& =8 \pi^{2}-25-25 \\
& =8 \pi^{2}-50 \\
f^{\prime}(\theta) & =16 \theta-25 \sin \theta \\
f^{\prime}(\pi) & =16 \pi-25 \sin \pi \\
& =16 \pi \\
\theta_{2} & =\theta_{1}-\frac{f(\theta)}{f^{\prime}(\theta)} \\
& =\pi-\frac{f(\pi)}{f^{\prime}(\pi)} \\
& =\pi-\frac{8 \pi^{2}-50}{16 \pi} \\
& =2.565514721 \ldots \\
& =2.57(2 \text { dec } \mathrm{pl})
\end{aligned}
$$

* These solutions have been provided by projectmaths and are not supplied or endorsed by BOSTES.

Board of Studies: Notes from the Marking Centre

(d)(i)

A large number of candidates quoted the cosine rule and substituted correctly to arrive at the required result.

A common problem was:

- not quoting the formula and/or not showing the substitutions
(ii)

Many candidates were able to execute an accurate and efficient solution by recognising that $r=\frac{200}{\theta}$, then substituting this into the equation from part (i) to eliminate r.

Common problems were:

- making algebraic slips when trying to simplify in the intermediate steps
- not relating to the information given in the question or not knowing the necessary formula $l=r \theta$
(iii)

Most candidates quoted the correct formula for Newton's method and correctly substituted their values.

A common problem was:

- not correctly differentiating $\cos \theta$

