$\mathbf{2 0 1 5} \frac{13}{\text { b }}$ Consider the binomial expansion $\left(2 x+\frac{1}{3 x}\right)^{18}=a_{0} x^{18}+a_{1} x^{16}+a_{2} x^{14}+\ldots$ where $a_{0}, a_{1}, a_{2}, \ldots$ are constants.
(i) Find an expression for a_{2}.
(ii) Find an expression for the term independent of x.
(i) $\left(2 x+\frac{1}{3 x}\right)^{18}=\ldots+{ }^{18} C_{2}(2 x)^{16}\left(\frac{1}{3 x}\right)^{2}+\ldots$
$=\ldots+{ }^{18} C_{2} 2^{16}\left(\frac{1}{3}\right)^{2} x^{14}+\ldots$

$\therefore a_{2}={ }^{18} C_{2} 2^{16}\left(\frac{1}{3}\right)^{2}$	State Mean:
1.49	

(ii) $T_{k+1}={ }^{18} C_{k}(2 x)^{18-k}\left(\frac{1}{3 x}\right)^{k}$

$$
x^{18-k} \times x^{-k}=x^{0}
$$

$$
x^{18-k}=x^{0}
$$

$$
18-2 k=0
$$

$$
k=9
$$

Substitute in ${ }^{18} C_{k}(2 x)^{18-k}\left(\frac{1}{3 x}\right)^{k}$:

$$
{ }^{18} C_{9}(2 x)^{9}\left(\frac{1}{3 x}\right)^{9}={ }^{18} C_{9} 2^{9}\left(\frac{1}{3}\right)^{9}
$$

* These solutions have been provided by projectmaths and are not supplied or endorsed by BOSTES.

Board of Studies: Notes from the Marking Centre

(b)(i)

Many candidates recognised and used terms of a binomial expansion, in particular the general term to help solve this question.

Common problems were:

- calculating the incorrect term, such as the second term
- using $\mathrm{k}=3$ instead of $\mathrm{k}=2$ in their expressions
- not recognising that only the coefficient was required.
(ii)

Some candidates who could not complete (i) had some success in this part.

