201513 Prove by mathematical induction that for all integers $n \geq 1$,
c

$$
\frac{1}{2!}+\frac{2}{3!}+\frac{3}{4!}+\ldots+\frac{n}{(n+1)!}=1-\frac{1}{(n+1)!}
$$

Step 1: Prove true for $n=1$:

$$
\begin{aligned}
\text { LHS } & =\frac{1}{(1+1)!} & \text { RHS } & =1-\frac{1}{(1+1)!} . \\
& =\frac{1}{2} & & =\frac{1}{2}
\end{aligned}
$$

\therefore true for $n=1$
Step 2: Assume true for $n=k$
i.e. $S_{k}=\frac{1}{2!}+\frac{2}{3!}+\frac{3}{4!}+\ldots+\frac{k}{(k+1)!}=1-\frac{1}{(k+1)!}$

Now prove true for $n=k+1 \quad$ i.e. $S_{k}+T_{k+1}=S_{k+1}$
$\therefore 1-\frac{1}{(k+1)!}+\frac{k+1}{(k+2)!}=1-\frac{1}{(k+2)!}$

$$
\begin{aligned}
\text { LHS } & =1-\frac{1}{(k+1)!}+\frac{k+1}{(k+2)!} \\
& =1-\frac{k+2-(k+1)}{(k+2)!} \\
& =1-\frac{k+2-k-1}{(k+2)!} \\
& =1-\frac{1}{(k+2)!} \\
& =\text { RHS } \\
& \therefore \text { true for } n=k+1
\end{aligned}
$$

State Mean: 2.25

Step 3: True for all values $n \geq 1$.

* These solutions have been provided by projectmaths and are not supplied or endorsed by BOSTES.

Board of Studies: Notes from the Marking Centre

Most candidates worked through the steps of an induction proof and were able to complete the proof.

Common problems were:

- not clearly setting out the proof, particularly in the inductive step
- not recognising what was the correct sum to prove
- not finding the correct denominator, and a poor understanding of factorials
- crossing out and making multiple attempts at the $\mathrm{n}=\mathrm{k}+1$ stage.

