201513 Let $f(x)=\cos ^{-1}(x)+\cos ^{-1}(-x)$, where $-1 \leq x \leq 1$.
d (i) By considering the derivative of $f(x)$, prove that $f(x)$ is constant.
(ii) Hence deduce that $\cos ^{-1}(-x)=\pi-\cos ^{-1}(x)$.

$$
\begin{align*}
f(x) & =\cos ^{-1}(x)+\cos ^{-1}(-x) \tag{i}\\
f^{\prime}(x) & =\frac{-1}{\sqrt{1-x^{2}}}+\frac{-1}{\sqrt{1-(-x)^{2}}} \times-1 \\
& =\frac{-1}{\sqrt{1-x^{2}}}+\frac{1}{\sqrt{1-x^{2}}} \\
& =0
\end{align*}
$$

As $f^{\prime}(x)=0$, then $f(x)$ is constant.
(ii) To find the constant, let $x=0$:

$$
\begin{aligned}
f(0) & =\cos ^{-1}(0)+\cos ^{-1}(-0) \\
& =\frac{\pi}{2}+\frac{\pi}{2} \\
& =\pi
\end{aligned}
$$

As $f(x)$ is constant, then $\cos ^{-1}(x)+\cos ^{-1}(-x)=\pi$

$$
\therefore \cos ^{-1}(-x)=\pi-\cos ^{-1}(x)
$$

* These solutions have been provided by projectmaths and are not supplied or endorsed by BOSTES.

Board of Studies: Notes from the Marking Centre

(d)(i)

Candidates are encouraged to take care with writing plus and minus signs.
Common problems were:

- ignoring the question and trying to solve the problem without differentiation
- calculating the derivative incorrectly
- not understanding that a constant function has a gradient of 0 .
(ii)

Candidates were generally more successful when they took the simplest approach of substituting into $f(x)$ an appropriate value (in the correct domain).

Common problems were:

- not reading the question (the word 'hence') to deduce the solution from part (i) not showing any proof
- ignoring the requirement to deduce the result by substituting into the required equation and showing the result was true.
HSC examination papers © Board of Studies NSW for and on behalf of the Crown in right of State of New South Wales

