201514 A particle is moving horizontally. Initially the particle is at the origin O moving with b velocity $1 \mathrm{~ms}^{-1}$. The acceleration of the particle is given by $\ddot{x}=x-1$, where x is its displacement at time t.
(i) Show that the velocity of the particle is given by $\dot{x}=1-x$.
(ii) Find an expression for x as a function of t.
(iii) Find the limiting position of the particle.
(i)

$$
\begin{aligned}
v^{2} & =2 \int x-1 d x \\
& =2\left[\frac{x^{2}}{2}-x\right]+c \\
v^{2} & =x^{2}-2 x+c
\end{aligned}
$$

Substitute $v=1, x=0$:

$$
\begin{aligned}
1^{2} & =(0)^{2}-2(0)+c \\
\therefore \quad c & =1 \\
\therefore v^{2} & =x^{2}-2 x+1 \\
& =(x-1)^{2} \\
\therefore v & = \pm(x-1)
\end{aligned}
$$

But $v=1, x=0$:

$$
\begin{aligned}
& \therefore v=-(x-1) \\
& \therefore \quad x=1-x
\end{aligned}
$$

$$
\begin{align*}
\frac{d x}{d t} & =1-x d x \tag{ii}\\
\therefore \frac{d t}{d x} & =\int \frac{1}{1-x} d x \\
t & =-\log _{e}(1-x)+k
\end{align*}
$$

Substitute $t=0, x=0$:

$$
\begin{aligned}
0 & =-0+k \\
\therefore \quad k & =0 \\
\therefore \quad t & =-\log _{e}(1-x) \\
\log _{e}(1-x) & =-t \\
1-x & =e^{-t} \\
x & =1-e^{-t}
\end{aligned}
$$

State Mean:

0.97

State Mean: 0.42

* These solutions have been provided by projectmaths and are not supplied or endorsed by BOSTES.

Board of Studies: Notes from the Marking Centre

(b)(i)

Those candidates who used $\frac{d}{d x}\left(\frac{1}{2} v^{2}\right)$ or $v \frac{d v}{d x}$ usually proceeded to write v^{2} as a perfect square in terms of x.

Common problems were:

- not recognising that acceleration was given as a function of displacement (x) and not as a function of time (t), and simply differentiating with respect to x
- not using the initial conditions to justify why $x=1-x$ (and not $x=x-1$), just assuming it to be so.

Responses using definite integrals were generally more successful than those using indefinite integrals.
(ii)

Common problems were:

- simply integrating the velocity equation to get a displacement equation, seemingly unconcerned with a function involving a mixture of x and t as the independent variables
- not understanding what ' x as a function of t ' means, and leaving answers, with t being the subject of the formula
- not finding the constant of integration when using indefinite integrals.
(iii)

Those candidates who successfully completed part (b)(ii), found a limiting position by realising that $\lim _{t \rightarrow \infty} e^{-t}=0$.
Another successful method was to solve $\dot{x}=0$, which is valid for a continually increasing function.

Many candidates who left their answer in terms of x in part (b)(ii) commenced this part by successfully making x the subject.

Common problems were:

- simply giving the range of the displacement function
- not realising a limiting position must be a finite number.

