20159 Two particles oscillate horizontally. The displacement of the first is given by $x=3 \sin 4 t$ and the displacement of the second is given by $x=a \sin n t$. In one oscillation, the second particle covers twice the distance of the first particle, but in half the time. What are the values of a and n ?
(A) $a=1.5, n=2$
(B) $a=1.5, n=8$
(C) $a=6, n=2$
(D) $a=6, n=8$

D

Amplitude of first particle: $a=3$
\therefore amplitude of second particle: $a=6$
Period of first particle: $\frac{2 \pi}{4}$
\therefore period of second particle: $\frac{1}{2} \times \frac{2 \pi}{4}=\frac{2 \pi}{8} \quad \therefore n=8$

$$
\therefore a=6, n=8
$$

* These solutions have been provided by projectmaths and are not supplied or endorsed by BOSTES.

