Want more revision exercises? Get MathsFit HSC Extension 1 for $\$ 2.95 /$ topic - New from projectmaths
201612 The diagram shows a conical soap dispenser of radius
a 5 cm and height 20 cm . At any time t seconds, the top surface of the soap in the container is a circle of radius $r \mathrm{~cm}$ and its height is $h \mathrm{~cm}$.
The volume of the soap is given by $v=\frac{1}{3} \pi r^{2} h$.
(i) Explain why $r=\frac{h}{4}$.
(ii) Show that $\frac{d v}{d h}=\frac{\pi}{16} h^{2}$.

The dispenser has a leak which causes soap to drip from the dispenser. The area of the circle formed by the top surface of the soap is decreasing at a constant rate of $0.04 \mathrm{~cm}^{2} \mathrm{~s}^{-1}$.
(iii) Show that $\frac{d h}{d t}=\frac{-0.32}{\pi h}$.

1
1

2
2
(iv) What is the rate of change of the volume of the soap, with respect to time, when $h=10$?
(i) Using matching sides of similar triangles:

$$
\begin{aligned}
\frac{r}{5} & =\frac{h}{20} \\
r & =\frac{h}{4}
\end{aligned}
$$

(ii) $\quad v=\frac{1}{3} \pi r^{2} h$

$$
\begin{aligned}
& =\frac{1}{3} \pi\left(\frac{h}{4}\right)^{2} h \\
\therefore v & =\frac{\pi h^{3}}{48} \\
\frac{d v}{d h} & =\frac{\pi}{16} h^{2}
\end{aligned}
$$

(iii) $\quad \frac{d A}{d t}=\frac{d A}{d h} \times \frac{d h}{d t} \quad A=\pi r^{2}$

$$
\begin{aligned}
& =\pi\left(\frac{h}{4}\right)^{2} \\
& =\frac{\pi h^{2}}{16}
\end{aligned}
$$

$$
\frac{d A}{d h}=\frac{\pi}{8} h
$$

$$
\begin{aligned}
-0.04 & =\frac{\pi}{8} h \times \frac{d h}{d t} \\
\frac{d h}{d t} & =-0.04 \div \frac{\pi}{8} h \\
& =\frac{-0.32}{\pi h}
\end{aligned}
$$

(iv)

$$
\begin{aligned}
\frac{d V}{d t} & =\frac{d V}{d h} \times \frac{d h}{d t} \\
& =\frac{\pi}{16}(10)^{2} \times \frac{-0.32}{\pi(10)} \\
& =-0.2
\end{aligned}
$$

\therefore the volume is decreasing at $0.2 \mathrm{~cm}^{3} \mathrm{~s}^{-1}$.

* These solutions have been provided by projectmaths and are not supplied or endorsed by BOSTES.
(i) In the large majority of responses, candidates wrote a proportion statement like $\frac{r}{5}=\frac{h}{20}$ and arrived at the result. Some candidates gave a full similarity proof which is more than is required for one mark.
Others made disconnected statements like $20 \div 5=4 \therefore r=\frac{h}{4}$. Common problems were:
- not using mathematical concepts to justify the result required by the instruction 'explain' (or 'show')
(ii) In many responses, candidates could substitute h into the given equation to get
$v=\frac{\pi h^{3}}{48}$
- differentiating and dealing with different variables, eg, differentiating (incorrectly) $v=\frac{1}{3} \pi r^{2} h$ with respect to h to gain $\frac{d v}{d h}=\frac{1}{3} \pi r^{2}$, or with respect to r to gain $\frac{d v}{d h}=\frac{2}{3} \pi r h$, and then arriving at the required result
- unnecessarily using the quotient rule to differentiate $v=\frac{\pi h^{3}}{48}$
(iii) In a substantial number of responses, candidates deduced that $\frac{d A}{d h}=\frac{\pi h}{8}$ and found a relationship between $\frac{d h}{d t}$ and $\frac{d A}{d t}$ leading to an efficient two-line solution. Common problems were:
- using completely invalid logic
- poor understanding of the chain rule, often leading to 'fudging' results
(iv) Many responses included a valid proof using $\frac{d V}{d t}=\frac{d V}{d h} \times \frac{d h}{d t}$.

However, many responses appeared to have been worked starting with the given result $\frac{d h}{d t}=\frac{-0.32}{\pi h}$, eg, $\frac{d h}{d t}=\frac{16}{\pi h^{2}} \times \frac{\square}{\square}=-\frac{0.32}{\pi h}$ so $\frac{\square}{\square}=-\frac{0.02 h}{1}$, therefore $\frac{d V}{d t}=-0.02 h$. Common problems were:

- using a variety of derivatives relating the variables in the question $\mathrm{v}, \mathrm{h}, \mathrm{A}$ (or S), r and t and putting them into chain rules hoping one would work
- making substitution and arithmetic errors

