Want more revision exercises? Get MathsFit HSC Extension 1 for $\$ 2.95 /$ topic - New from projectmaths
20178 A stone drops into a pond, creating a circular ripple. The radius of the ripple increases from 0 cm , at a constant rate of $5 \mathrm{~cm} \mathrm{~s}^{-1}$. At what rate is the area of enclosed within the ripple increasing when the radius is 15 cm ?
(A) $25 \pi \mathrm{~cm}^{2} \mathrm{~s}^{-1}$
(B) $30 \pi \mathrm{~cm}^{2} \mathrm{~s}^{-1}$
(C) $150 \pi \mathrm{~cm}^{2} \mathrm{~s}^{-1}$
(D) $225 \pi \mathrm{~cm}^{2} \mathrm{~s}^{-1}$

C

$$
\begin{aligned}
A & =\pi r^{2} \\
\frac{d A}{d r} & =2 \pi r \\
\frac{d A}{d r}(15) & =30 \pi \\
\frac{d A}{d t} & =\frac{d A}{d r} \times \frac{d r}{d t} \\
& =30 \pi \times 5 \\
& =150 \pi \quad
\end{aligned}
$$

[^0]
[^0]: * These solutions have been provided by projectmaths and are not supplied or endorsed by NESA.

