Want more revision exercises? Click here for MathsFit for \$2.95/topic - from projectmaths

2019 12a MX 1Distance *A* is inversely proportional to distance *B*, such that $A = \frac{9}{B}$, where *A* and *B* are measured in metres. The two distances vary with respect to time. Distance *B* is increasing at a rate of 0.2 ms⁻¹. What is the value of $\frac{dA}{dt}$ when A = 12?

$A = \frac{9}{B}$ Substitute $A = 12$:	$A = 9B^{-1}$ $\frac{dA}{dB} = -9B^{-2}$	
$12 = \frac{9}{B}$	$\frac{dA}{dB}(\frac{3}{4}) = -9(\frac{3}{4})^{-2}$	
$B = \frac{3}{4} \checkmark$	= -16 🗸	
7	$\frac{dA}{dt} = \frac{dA}{dB} \times \frac{dB}{dt}$	
	$= -16 \times 0.2$	
	Mean: 3/3 = -3.2	$\therefore \frac{dA}{dt} = -3.2 \text{ ms}^{-1} \checkmark$

* These solutions have been provided by *projectmaths* and are not supplied or endorsed by NESA.

Marking Feedback:

Students should:

Looking for Mathematics Extension 2 Revision? Go to <u>MathsFit</u> for Topic files – just \$2.95 each

projectmaths.com.au

3

• recognise a related rates question and understand the processes required to solve it.

In better responses students were able to find the:

- show the use of the chain rule
- show their result for $\frac{dA}{dB}$
- evaluate *B* correctly and substituted it correctly into the chain rule.

Areas for students to improve include:

- using the calculator correctly
- differentiating to find $\frac{dA}{dB}$