2010 The quantities P, Q and R are connected by the related rates, MX
1

$$
\frac{d R}{d t}=-k^{2} \quad \frac{d P}{d t}=-I^{2} \times \frac{d R}{d t} \quad \frac{d P}{d t}=m^{2} \times \frac{d Q}{d t}
$$

where k, l and m are non-zero constants.
Which of the following statements is true?
A P is increasing and Q is increasing
B P is increasing and Q is decreasing
C P is decreasing and Q is increasing
D P is decreasing and Q is decreasing

A

$$
\begin{aligned}
\frac{d P}{d t} & =-I^{2} \times \frac{d R}{d t} \\
& =-I^{2} \times-k^{2} \\
& =k^{2} I^{2}>0 \\
k^{2} I^{2} & =m^{2} \times \frac{d Q}{d t} \\
\frac{d Q}{d t} & =\frac{k^{2} I^{2}}{m^{2}}>0
\end{aligned}
$$

$\therefore P$ is increasing and Q is increasing.
Alternately, as $\frac{d R}{d t}<0$, so $\frac{d P}{d t}>0$, and so P is increasing.
Hence, if $\frac{d P}{d t}>0$, then $\frac{d Q}{d t}>0$. This means Q is increasing.

* These solutions have been provided by projectmaths and are not supplied or endorsed by NESA.

