1 1

20 12 МХ b

1

b When a particular biased coin is tossed, the probability of obtaining a head is $\frac{3}{5}$.

This coin is tossed 100 times.

Let X be the random variable representing the number of heads obtained. This random variable will have a binomial distribution.

- (i) Find the expected value, E(X).
- (ii) By finding the variance, Var(X), show that the standard deviation of X is approximately 5.
- (iii) By using a normal distribution, find the approximate probability that *X* is between **1** 55 and 65.

(i) $E(X) = \mu = np$	(iii) $z_1 = \frac{55-60}{5}$	
$= 100 \times \frac{3}{5}$ $= 60 \checkmark$	$= -1$ $z_2 = \frac{65 - 60}{5}$	
(ii) $Var(X) = np(1 - p)$	= 1 55 $\leq P(X) \leq 65 = -1 \leq z \leq 1$	
$= 60(1 - \frac{3}{5})$	≈ 0.68 🖌	State Mean: 0.95/1
= 24 $\sigma = \sqrt{24} \approx 5 \checkmark$		0.88/1 0.71/1

HSC Marking Feedback

Part (b)(i)

Students should:

- understand the parameters associated with binomial distributions, ie $X \sim Bin(100,0.6)$
- identify correct formula from Reference Sheet.

In better responses, students were able to:

use the correct formula to arrive at the answer.

Areas for students to improve include:

familiarising themselves with the Reference Sheet.

Part (b)(ii)

Looking for **Mathematics Extension 1** Topic Revision? Go to our <u>MathsFit</u> page for downloads – just \$2.95

Students should:

- understand the relationship between variance and standard deviation
- calculate the variance and hence, the standard deviation.

In better responses, students were able to:

- substitute correctly in the formula for variance
- show that the standard deviation is $\sqrt{24}$.

Areas for students to improve include:

focusing on using the Reference Sheet correctly.

Part (b)(iii)

Students should:

- link the probability to the standardised z-scores in normal distributions
- read-off the probability from the Reference Sheet.

In better responses, students were able to:

 use the empirical rule found in the Reference Sheet rather than attempting to calculate probabilities from z-scores.

Areas for students to improve include:

- reading the question carefully to ascertain when and how normal distribution approximation should be used.
- * These solutions have been provided by *projectmaths* and are not supplied or endorsed by NESA.