$\begin{array}{cc}\mathbf{2 0} & \mathbf{1 2} \\ \mathbf{M X} & \mathbf{b}\end{array}$ When a particular biased coin is tossed, the probability of obtaining a head is $\frac{3}{5}$.
This coin is tossed 100 times.
Let X be the random variable representing the number of heads obtained. This random variable will have a binomial distribution.
(i) Find the expected value, $E(X)$.
(i) $E(X)=\mu=n p$

$$
\begin{aligned}
& =100 \times \frac{3}{5} \\
& =60
\end{aligned}
$$

(ii) $\operatorname{Var}(X)=n p(1-p)$

$$
\begin{aligned}
& =60\left(1-\frac{3}{5}\right) \\
& =24 \\
\sigma & =\sqrt{24} \approx 5
\end{aligned}
$$

$$
\text { (iii) } \begin{aligned}
z_{1} & =\frac{55-60}{5} \\
& =-1 \\
z_{2} & =\frac{65-60}{5} \\
& =1 \\
55 \leq P(X) \leq 65 & =-1 \leq z \leq 1 \\
& \approx 0.68 \vee \\
& \\
& \\
& \\
& \\
& \\
& 0.95 / 1 \\
& 0.71 / 1
\end{aligned}
$$

HSC Marking Feedback

Part (b)(i)

Students should:

- understand the parameters associated with binomial distributions, ie $X \sim \operatorname{Bin}(100,0.6)$
- identify correct formula from Reference Sheet.

In better responses, students were able to:

- use the correct formula to arrive at the answer.

Areas for students to improve include:

- familiarising themselves with the Reference Sheet.

Part (b)(ii)

Go to our MathsFit page for downloads - just $\$ 2.95$

Students should:

- understand the relationship between variance and standard deviation
- calculate the variance and hence, the standard deviation.

In better responses, students were able to:

- substitute correctly in the formula for variance
- show that the standard deviation is $\sqrt{24}$.

Areas for students to improve include:

- focusing on using the Reference Sheet correctly.

Part (b)(iii)

Students should:

- link the probability to the standardised z-scores in normal distributions
- read-off the probability from the Reference Sheet.

In better responses, students were able to:

- use the empirical rule found in the Reference Sheet rather than attempting to calculate probabilities from z-scores.

Areas for students to improve include:

- reading the question carefully to ascertain when and how normal distribution approximation should be used.
* These solutions have been provided by projectmaths and are not supplied or endorsed by NESA.

