projectmaths.com.au

HSC Worked Solutions

MX 11 SP a			
	The equations of motion are $\frac{d^2x}{dt^2} = 0$ and $\frac{d^2y}{dt^2} = -10$		
	(i) Show that $x = 9t$. (ii) Show that $y = 9\sqrt{3}t - 5t^2$. (iii) Hence find the Cartesian equation f	or the trajectory of the particle.	1 2 1
$\therefore C_1 = \\ \therefore x = \\ x = $	When $t = 0$: $x = 18\cos 60^{\circ} = 9$ $y = 18\sin 60^{\circ} = 9\sqrt{3}$ y y y y y y y x y y y x x x x y y y x x x x x y y y x x x x y y y x x x x x x x x	(ii) $\ddot{y} = -10$ $\dot{y} = -10t + C_3$ Substitute $t = 0, \ \dot{y} = 9\sqrt{3}$: $C_3 = 9\sqrt{3}$ $\therefore \ \dot{y} = 9\sqrt{3} - 10t$ $y = 9\sqrt{3}t - 5t^2 + C_4$ Substitute $t = 0, \ y = 0$: $\therefore C_4 = 0$ $\therefore \ y = 9\sqrt{3}t - 5t^2 \dots *$ (iii) Substitute $t = \frac{x}{9}$ into *: $y = 9\sqrt{3}t - 5t^2$ $= \sqrt{3}x - \frac{5x^2}{81}$	

* These solutions have been provided by *projectmaths* and are not supplied or endorsed by NESA.

Looking for Mathematics Extension 1 Topic Revision? Go to our *MathsFit* page for downloads @\$2.95 each