MX 11 A particle is fired from the origin O with initial velocity $18 \mathrm{~ms}^{-1}$ at an angle 60° to the SP a horizontal.

The equations of motion are $\frac{d^{2} x}{d t^{2}}=0$ and $\frac{d^{2} y}{d t^{2}}=-10$
(i) Show that $x=9 t$.
(ii) Show that $y=9 \sqrt{3} t-5 t^{2}$.
(iii) Hence find the Cartesian equation for the trajectory of the particle.
(i)

$$
\begin{aligned}
& \ddot{x}=0 \\
& \dot{x}=C_{1}
\end{aligned}
$$

Substitute $t=0, \dot{x}=9$:
$\therefore C_{1}=9$
$\therefore \dot{x}=9$

$$
x=9 t+C_{2}
$$

Substitute $t=0, x=0$:

$$
\begin{aligned}
\therefore C_{2} & =0 \\
x & =9 t
\end{aligned}
$$

(ii) $\ddot{y}=-10$

$$
\dot{y}=-10 t+C_{3}
$$

Substitute $t=0, \dot{y}=9 \sqrt{3}$:

$$
\begin{aligned}
C_{3} & =9 \sqrt{3} \\
\therefore \dot{y} & =9 \sqrt{3}-10 t \\
y & =9 \sqrt{3} t-5 t^{2}+C_{4}
\end{aligned}
$$

Substitute $t=0, y=0$:

$$
\begin{aligned}
\therefore C_{4} & =0 \\
\therefore y & =9 \sqrt{3} t-5 t^{2} \ldots . *
\end{aligned}
$$

(iii) Substitute $t=\frac{x}{9}$ into *:

$$
\begin{aligned}
y & =9 \sqrt{3} t-5 t^{2} \\
& =\sqrt{3} x-\frac{5 x^{2}}{81}
\end{aligned}
$$

* These solutions have been provided by projectmaths and are not supplied or endorsed by NESA.

Looking for Mathematics Extension 1 Topic Revision?
Go to our MathsFit page for downloads @\$2.95 each

