MX 11 A function $f(x)$ is given by $x^{2}+4 x+7$.
$\mathbf{S P} \quad \mathbf{b}$ (i) Explain why the domain of the function $f(x)$ must be restricted if $f(x)$ is to have
1 an inverse function.
(ii) Give the equation for $f^{-1}(x)$ if the domain of $f(x)$ is restricted to $x \geq-2$.
(iii) State the domain and range of $f^{-1}(x)$, given the restriction in part (b).
(iv) Sketch the curve $y=f^{-1}(x)$.
(i) $f(x)=x^{2}+4 x+7$ is a parabola.

Except for the minimum value, all other $f(x)$ values in the range has two x-values. This means the horizontal line test fails and so the domain needs to be restricted.

$$
\begin{equation*}
\text { Let } y=x^{2}+4 x+7 \tag{ii}
\end{equation*}
$$

\therefore for $f^{-1}(x): x=y^{2}+4 y+7$.

$$
\begin{aligned}
y^{2}+4 y & =x-7 \\
y^{2}+4 y+4 & =x-7+4 \\
(y+2)^{2} & =x-3 \\
y+2 & = \pm \sqrt{x-3} \\
y & =-2 \pm \sqrt{x-3}
\end{aligned}
$$

But, as domain for $f(x)$ is $x \geq-2$, then range of $f^{-1}(x)$ is $y \geq-2$.

$$
\begin{aligned}
\therefore y & =-2+\sqrt{x-3} \\
\therefore f^{-1}(x) & =-2+\sqrt{x-3}
\end{aligned}
$$

(iii) For $f^{-1}(x)$:

Domain: $x \geq 3$, or $[3, \infty$)
Range: $y \geq-2$, or $[-2, \infty)$
(iv)

Looking for Mathematics Extension 1 Topic Revision? Go to our MathsFit page for downloads @\$2.95 each

[^0]
[^0]: * These solutions have been provided by projectmaths and are not supplied or endorsed by NESA.

