

**MX** c fluid are described by the differential equation  $dy = \frac{1}{2}(y - 2)(y - y)$ 

$$\frac{dy}{dx} = \frac{1}{4}(y-2)(y-x).$$

The slope field for the differential equation is sketched.

(i) Identify any solutions of the form y = k, where k is a constant.



(ii) Draw a sketch of the trajectory of a particle in the fluid which passes through the point (-3, 1) and describe the trajectory as  $x \rightarrow \pm \infty$ .

(i) 
$$\frac{dy}{dx} = 0$$
 when  $y = 2$ .  
Hence  $k = 2$ 



As  $x \to \pm \infty$ , the particle approaches y = 2 from below.

\* These solutions have been provided by *projectmaths* and are not supplied or endorsed by NESA.

Looking for **Mathematics Extension 1** Topic Revision? Go to our <u>MathsFit</u> page for downloads @ \$2.95 each