SP 11 The trajectories of particles in a
MX C fluid are described by the 1 differential equation

$$
\frac{d y}{d x}=\frac{1}{4}(y-2)(y-x)
$$

The slope field for the differential equation is sketched.
(i) Identify any solutions of the form $y=k$, where k is a constant.

(ii) Draw a sketch of the trajectory of a particle in the fluid which passes through the point $(-3,1)$ and describe the trajectory as $x \rightarrow \pm \infty$.
(i) $\frac{d y}{d x}=0$ when $y=2$.

Hence $k=2$.
(ii)

As $x \rightarrow \pm \infty$, the particle approaches $y=2$ from below.

* These solutions have been provided by projectmaths and are not supplied or endorsed by NESA.

