
(i) Find the component of the force F in the direction of the line ℓ.
(ii) What is the component of the force F in the direction perpendicular to the line?
(i) Let $\underset{\sim}{v}=\binom{3}{4}$
\therefore unit vector parallel to $\underset{\sim}{v}$ is $\underset{\sim}{v}$.

$$
\begin{aligned}
\hat{\sim} \underset{\sim}{v}=\frac{\underset{\sim}{v}}{|\underset{\sim}{v}|} & =\frac{\binom{3}{4}}{\left|\binom{3}{4}\right|} \\
& =\frac{\binom{3}{4}}{\sqrt{3^{2}+4^{2}}} \\
& =\frac{1}{5}\binom{3}{4} \\
& =\binom{0.6}{0.8}
\end{aligned}
$$

For the projection of $\underset{\sim}{F}$ on $\underset{\sim}{v}$:

Now, $\underset{\sim}{v} \cdot \underset{\sim}{F}=\binom{0.6}{0.8} \cdot\binom{2}{1}$

$$
\begin{aligned}
& =0.6 \times 2+0.8 \times 1 \\
& =2
\end{aligned}
$$

$$
\text { Also, } \begin{aligned}
\left|\begin{array}{|l}
\left.\hat{\sim}\right|_{\sim} ^{2}
\end{array}\right| & =\sqrt{0.6^{2}+0.8^{2}} \\
& =1
\end{aligned}
$$

$$
\therefore \operatorname{proj}_{\underset{\sim}{\hat{v}}}^{\underset{\sim}{F}} \underset{\sim}{F}=\frac{2}{1} \cdot \hat{\sim}
$$

$$
=2\binom{0.6}{0.8}
$$

$$
=\binom{1.2}{1.6}
$$

(ii) As $\underset{\sim}{F}=\binom{2}{1}$, then
$\binom{2}{1}-\binom{1.2}{1.6}=\binom{0.8}{-0.6}$.
[Checking, $\left.\binom{1.2}{1.6} \cdot\binom{0.8}{-0.6}=0\right]$

[^0]
[^0]: * These solutions have been provided by projectmaths and are not supplied or endorsed by NESA.

