$\begin{array}{lc}\mathbf{M X} & \mathbf{1 2} \\ \mathbf{S P} & \text { The points } A \text { and } B \text { are fixed points in a plane and have position vectors } \underset{\sim}{a} \text { and } \underset{\sim}{b}\end{array}$ respectively. The point P with position vector p also lies in the plane and is chosen so that $\angle A P B=90^{\circ}$.
(i) Explain why $(\underset{\sim}{a}-\underset{\sim}{p}) \cdot(\underset{\sim}{b}-\underset{\sim}{p})=0$
(ii) Let $\underset{\sim}{m}=\frac{1}{2}(\underset{\sim}{a}+\underset{\sim}{b})$ denote the position vector of M, the midpoint of A and B. Using the properties of vectors, show that $|\underset{\sim}{p}-\underset{\sim}{m}|^{2}$ is independent of $\underset{\sim}{p}$ and find its value.
(iii) What does the result in part (ii) prove about the point P ?

1
3

1
(i) From the diagram,

$$
\overrightarrow{P A}=\underset{\sim}{a}-\underset{\sim}{p} \text { and } \overrightarrow{P B}=\underset{\sim}{b}-\underset{\sim}{p} .
$$

As $\overrightarrow{P A} \perp \overrightarrow{P B}$, then $(\underset{\sim}{a}-\underset{\sim}{p}) \cdot(\underset{\sim}{b}-\underset{\sim}{p})=0$.
(ii) As $(\underset{\sim}{a}-\underset{\sim}{p}) \cdot(\underset{\sim}{b}-\underset{\sim}{p})=0$, then

$$
\underset{\sim}{a} \cdot \underset{\sim}{b}-\underset{\sim}{p} \cdot(\underset{\sim}{a}+\underset{\sim}{b})+\underset{\sim}{p} \cdot \underset{\sim}{p}=0 \ldots \text { * }
$$

$$
\text { Now, }|\underset{\sim}{p}-\underset{\sim}{m}|^{2}=\left|\underset{\sim}{p}-\frac{1}{2}(\underset{\sim}{a}+\underset{\sim}{b})\right|^{2}
$$

$$
=\left\lvert\, \frac{1}{2}\left(2 \underset{\sim}{p}-\left.(\underset{\sim}{a}+\underset{\sim}{b})\right|^{2}\right.\right.
$$

$$
=\frac{1}{4}|2 \underset{\sim}{p}-(\underset{\sim}{a}+\underset{\sim}{b})|^{2}
$$

$$
=\frac{1}{4}[(2 \underset{\sim}{p}-(\underset{\sim}{a}+\underset{\sim}{b}) \cdot(2 \underset{\sim}{p}-(\underset{\sim}{a}+\underset{\sim}{b}))]
$$

$$
=\frac{1}{4} \times 4 \underset{\sim}{p} \cdot \underset{\sim}{p}-\frac{1}{4} \times 4 \underset{\sim}{p}(\underset{\sim}{a}+\underset{\sim}{b})+\frac{1}{4} \times(\underset{\sim}{a}+\underset{\sim}{b}) \cdot(\underset{\sim}{a}+\underset{\sim}{b})
$$

$$
=\underset{\sim}{p} \cdot \underset{\sim}{p}-\underset{\sim}{p}(\underset{\sim}{a}+\underset{\sim}{b})+\frac{1}{4}(\underset{\sim}{a}+\underset{\sim}{b}) \cdot(\underset{\sim}{a}+\underset{\sim}{b})
$$

But, from $*, \underset{\sim}{p} \cdot(\underset{\sim}{a}+\underset{\sim}{b})=\underset{\sim}{a} \cdot \underset{\sim}{b}+\underset{\sim}{p} \cdot \underset{\sim}{p}$,
hence, $|\underset{\sim}{p}-\underset{\sim}{m}|^{2}=\underset{\sim}{p} \cdot \underset{\sim}{p}-[\underset{\sim}{a} \cdot \underset{\sim}{b}+\underset{\sim}{p} \cdot \underset{\sim}{p}]+\frac{1}{4}(\underset{\sim}{a}+\underset{\sim}{b}) \cdot(\underset{\sim}{a}+\underset{\sim}{b})$

$$
=\frac{1}{4}(\underset{\sim}{a}+\underset{\sim}{b}) \cdot(\underset{\sim}{a}+\underset{\sim}{b})-\underset{\sim}{a} \cdot \underset{\sim}{b} \text {, which is independent of } \underset{\sim}{p} \text {. }
$$

(iii) As $|\underset{\sim}{p}-\underset{\sim}{m}|^{2}=\frac{1}{4}(\underset{\sim}{a}+\underset{\sim}{b}) \cdot(\underset{\sim}{a}+\underset{\sim}{b})-\underset{\sim}{a} \cdot \underset{\sim}{b}$, then P lies on a circle, centre at origin with radius $\sqrt{\frac{1}{4}(\underset{\sim}{a}+\underset{\sim}{b}) \cdot(\underset{\sim}{a}+\underset{\sim}{b})-\underset{\sim}{a} \cdot b}$ units. Other solutions at
https://educationstandards.nsw.edu.au/wps/wcm/connect/0ca974bc-60ce-4be4-9410-

6e2351ca8049/mathematics-ext-1-sample-examination-materials-2020.pdf?MOD=AJPERES\&CVID=

* These solutions have been provided by projectmaths and are not supplied or endorsed by NESA.

[^0]
[^0]: Looking for Mathematics Extension 1 Topic Revision?
 Go to our MathsFit page for downloads @ \$2.95 each

