HSC Worked Solutions

MX	12 d	Use mathematical induction to prove that $2^{3n} - 3$	n is divisible by 5 for $n \ge 1$.	3
12 MX 1	u 12 a			
Test r	n = 1:	$2^3 - 3^1 = 8 - 3$		
		= 5, which is divisible by 5	\therefore true for $n = 1$	
Let $n = k$ be a value for which the result is true. Let $2^{3k} - 3^k = 5M$, where M is an integer.				
Now prove true for $n = k + 1$				
	23()	$(k^{(+1)} - 3^{k+1} = 2^{3k+3} - 3^{k+1})$		
		$= 2^{3k} \cdot 2^3 - 3^k \cdot 3$		
		$= 8 \times 2^{3k} - 3.3^k$		
		$= 5 \times 2^{3k} + 3 \times 2^{3k} - 3.3^{k}$		
		$= 5 \times 2^{3k} + 3(2^{3k} - 3^k)$		
		$= 5 \times 2^{3k} + 3(5M)$		
		= $5[2^{3k} + 3M]$, which is divisible by 5	\therefore true for $n = k + 1$	
\therefore by the principle of mathematical induction, the result is true for all integers $n \ge 1$.				

* These solutions have been provided by *projectmaths* and are not supplied or endorsed by NESA.

Looking for Mathematics Extension 1 Topic Revision? Go to our *MathsFit* page for downloads @ \$2.95 each