$\mathbf{M X}$	$\mathbf{1 2}$	Use mathematical induction to prove that $2^{3 n}-3^{n}$ is divisible by 5 for $n \geq 1$.			
$\mathbf{S P}$	\mathbf{d}				
$\mathbf{1 2}$	$\mathbf{1 2}$				
$\mathbf{M X}$	\mathbf{a}				
$\mathbf{1}$			\quad		
---:	:---				
Test $n=1:$	$2^{3}-3^{1}$ $=8-3$ $=5$, which is divisible by 5				

Let $n=k$ be a value for which the result is true.
Let $2^{3 k}-3^{k}=5 M$, where M is an integer.
Now prove true for $n=k+1$

$$
\begin{aligned}
2^{3(k+1)}-3^{k+1} & =2^{3 k+3}-3^{k+1} \\
& =2^{3 k} .2^{3}-3^{k} .3 \\
& =8 \times 2^{3 k}-3.3^{k} \\
& =5 \times 2^{3 k}+3 \times 2^{3 k}-3.3^{k} \\
& =5 \times 2^{3 k}+3\left(2^{3 k}-3^{k}\right) \\
& =5 \times 2^{3 k}+3(5 M) \\
& =5\left[2^{3 k}+3 M\right], \text { which is divisible by } 5 \quad \therefore \text { true for } n=k+1
\end{aligned}
$$

\therefore by the principle of mathematical induction, the result is true for all integers $n \geq 1$.

[^0]
[^0]: * These solutions have been provided by projectmaths and are not supplied or endorsed by NESA.

