MX SP

A device playing a signal given by $x = \sqrt{2} \sin t + \cos t$ produces distortion whenever $|x| \ge 1.5.$

For what fraction of the time will the device produce distortion if the signal is played continuously?

Rewrite $\sqrt{2} \sin t + \cos t$ as $\cos t + \sqrt{2} \sin t$ and express in the form $R \cos (t - \alpha)$:

$$r=\sqrt{1^2+(\sqrt{2})^2}=\sqrt{3}$$
 , and $\tan\alpha=\sqrt{2}$.

As
$$|x| \ge 1.5$$
 then consider $|\sqrt{3} \cos(t - \alpha)| \ge \frac{3}{2}$

$$|\cos(t-\alpha)| \geq \frac{3}{2\sqrt{3}}$$

$$|\cos(t-\alpha)| \geq \frac{\sqrt{3}}{2}$$

Now in the domain $[0, \frac{\pi}{2}]$, $\cos(t - \alpha) \ge \frac{\sqrt{3}}{2}$ when $[0, \frac{\pi}{6}]$, which is one-third of the time.

This fraction is consistent for all multiples of $\frac{\pi}{2}$ s, so the fraction is $\frac{1}{3}$.

Looking for Mathematics Extension 1 Topic Revision? Go to our MathsFit page for downloads @ \$2.95 each

^{*} These solutions have been provided by projectmaths and are not supplied or endorsed by NESA.