MX

SP

13 A device playing a signal given by $x=\sqrt{2} \sin t+\cos t$ produces distortion whenever $|x| \geq 1.5$.
For what fraction of the time will the device produce distortion if the signal is played continuously?

Rewrite $\sqrt{2} \sin t+\cos t$ as $\cos t+\sqrt{2} \sin t$ and express in the form $R \cos (t-\alpha)$:
$r=\sqrt{1^{2}+(\sqrt{2})^{2}}=\sqrt{3}$, and $\tan \alpha=\sqrt{2}$.
As $|x| \geq 1.5$ then consider $|\sqrt{3} \cos (t-\alpha)| \geq \frac{3}{2}$

$$
\begin{aligned}
& |\cos (t-\alpha)| \geq \frac{3}{2 \sqrt{3}} \\
& |\cos (t-\alpha)| \geq \frac{\sqrt{3}}{2}
\end{aligned}
$$

Now in the domain $\left[0, \frac{\pi}{2}\right], \cos (t-\alpha) \geq \frac{\sqrt{3}}{2}$ when $\left[0, \frac{\pi}{6}\right]$, which is one-third of the time.
This fraction is consistent for all multiples of $\frac{\pi}{2} \mathrm{~s}$, so the fraction is $\frac{1}{3}$.

* These solutions have been provided by projectmaths and are not supplied or endorsed by NESA.

