$\mathbf{M X}$	$\mathbf{1 3}$	(i)	Prove the trigonometric identity $\cos 3 \theta=4 \cos ^{3} \theta-3 \cos \theta$.

(i)

$$
\begin{aligned}
\text { LHS } & =\cos 3 \theta \\
& =\cos (2 \theta+\theta) \\
& =\cos 2 \theta \cos \theta-\sin 2 \theta \sin \theta \\
& =\left(2 \cos ^{2} \theta-1\right) \cos \theta-2 \sin \theta \cos \theta \sin \theta \\
& =2 \cos ^{3} \theta-\cos \theta-2 \cos \theta \sin ^{2} \theta \\
& =2 \cos ^{3} \theta-\cos \theta-2 \cos \theta\left(1-\cos ^{2} \theta\right) \\
& =2 \cos ^{3} \theta-\cos \theta-2 \cos \theta+2 \cos ^{3} \theta \\
& =4 \cos ^{3} \theta-3 \cos \theta \\
& =\text { RHS }
\end{aligned}
$$

$$
\text { (ii) From (i), } \begin{aligned}
\cos 3 \theta & =4 \cos ^{3} \theta-3 \cos \theta \\
2 \cos 3 \theta & =8 \cos ^{3} \theta-6 \cos \theta \\
8 \cos ^{3} \theta-6 \cos \theta & =2 \cos 3 \theta
\end{aligned}
$$

$$
\text { Let } x=\cos \theta \text { : }
$$

$$
x^{3}-6 x=2 \cos 3 \theta=1
$$

$$
\text { Hence, need to solve } 2 \cos 3 \theta=1 \text { : }
$$

$$
2 \cos 3 \theta=1
$$

$$
\cos 3 \theta=\frac{1}{2}
$$

$$
3 \theta=\frac{\pi}{3}, \frac{5 \pi}{3}, \frac{7 \pi}{3}, \frac{11 \pi}{3}, \frac{13 \pi}{3}, \frac{17 \pi}{3}, \ldots
$$

$$
\theta=\frac{\pi}{9}, \frac{5 \pi}{9}, \frac{7 \pi}{9}, \frac{11 \pi}{9}, \frac{13 \pi}{9}, \frac{17 \pi}{9}, \ldots
$$

Hence, unique solutions are $x=\cos \frac{\pi}{9}, \cos \frac{5 \pi}{9}$ and $\cos \frac{7 \pi}{9}$ (as others provide same solutions)

* These solutions have been provided by projectmaths and are not supplied or endorsed by NESA.

Looking for Mathematics Extension 1 Topic Revision?
Go to our MathsFit page for downloads @ $\$ 2.95$ each

