HSC Worked Solutions

MX 13 (i) Prove the trigonometric identity $\cos 3\theta = 4\cos^3 \theta - 3\cos \theta$. **SP C** (ii) Hence find compositions for the super-trigonometric densities to the super-

(ii) Hence find expressions for the exact values of the solutions to the equation $8x^3 - 6x = 1.$

(i)	(ii) From (i), $\cos 3\theta = 4\cos^3 \theta - 3\cos \theta$
LHS = $\cos 3\theta$	$2\cos 3\theta = 8\cos^3 \theta - 6\cos \theta$
$= \cos(2\theta + \theta)$	$8\cos^3\theta - 6\cos\theta = 2\cos 3\theta$
$= \cos 2\theta \cos \theta - \sin 2\theta \sin \theta$	Let $x = \cos \theta$:
= $(2\cos^2\theta - 1)\cos\theta - 2\sin\theta\cos\theta\sin\theta$	$x^3 - 6x = 2\cos 3\theta = 1$
= $2\cos^3\theta - \cos\theta - 2\cos\theta \sin^2\theta$	Hence, need to solve $2\cos 3\theta = 1$:
$= 2\cos^3\theta - \cos\theta - 2\cos\theta (1 - \cos^2\theta)$	$2\cos 3\theta = 1$
$= 2\cos^3\theta - \cos\theta - 2\cos\theta + 2\cos^3\theta$	$\cos 3\theta = \frac{1}{2}$
$= 4\cos^3\theta - 3\cos\theta$	z
= RHS	$3\theta = \frac{\pi}{3}, \frac{5\pi}{3}, \frac{7\pi}{3}, \frac{11\pi}{3}, \frac{11\pi}{3}, \frac{15\pi}{3}, \frac{17\pi}{3}, \dots$
	$\theta = \frac{\pi}{9}, \frac{5\pi}{9}, \frac{7\pi}{9}, \frac{11\pi}{9}, \frac{13\pi}{9}, \frac{17\pi}{9}, \dots$
	Hence, unique solutions are $x = \cos \frac{\pi}{9}$, $\cos \frac{5\pi}{9}$ and
	$\cos \frac{7\pi}{9}$ (as others provide same solutions)

* These solutions have been provided by *projectmaths* and are not supplied or endorsed by NESA.

Looking for **Mathematics Extension 1** Topic Revision? Go to our <u>MathsFit</u> page for downloads @ \$2.95 each

3 4