SP

MX 14 The population of foxes on an island is modelled by the logistic equation

b $\frac{dy}{dt} = y(1 - y)$, where y is the fraction of the island's carrying capacity reached after t years.

At time t = 0, the population of foxes is estimated to be one-quarter of the island's carrying capacity.

- (i) Use the substitution $y = \frac{1}{1-w}$ to transform the logistic equation to $\frac{dw}{dt} = -w$. 2
- (ii) Using the solution of $\frac{dw}{dt} = -w$, find the solution of the logistic equation for **2** *y* satisfying the initial conditions.
- (iii) How long will it take for the fox population to reach three-quarters of the island's carrying capacity?

(i)
$$\frac{dy}{dt} = y(1 - y)$$

 $= \frac{1}{1 - w} (1 - \frac{1}{1 - w})$
 $= \frac{1}{1 - w} (\frac{1 - w - 1}{1 - w})$
 $= \frac{1}{1 - w} (\frac{1 - w - 1}{1 - w})$
 $= \frac{1}{1 - w} (\frac{-w}{1 - w})$
 $= \frac{-w}{(1 - w)^2}$
Also, $y = \frac{1}{1 - w}$
 $= (1 - w)^{-1}$
 $\frac{dy}{dw} = -1(1 - w)^{-2} - 1$
 $= \frac{1}{(1 - w)^2}$
As $\frac{dy}{dt} = \frac{dy}{dw} \times \frac{dw}{dt}$,
 $\frac{-w}{(1 - w)^2} = \frac{1}{(1 - w)^2} \times \frac{dw}{dt}$
 $\frac{dw}{dt} = -w$
Looking for Mathematics Extension I Topic Revision?
Go to our Multiritig page for downloads @ \$2,295 each
(ii) $\frac{dw}{dt} = -w$
(iii) $\frac{dw}{dt} = -w$
(iii) $\frac{dw}{dt} = -w$
(iv) $\frac{dw}{dt} = \frac{1}{1 - w}$
(iv) $\frac{dw}{dt} = \frac{1$

* These solutions have been provided by projectmaths and are not supplied or endorsed by NESA.